certificates/policy/ssh/ssh.go
2022-01-04 15:41:40 +01:00

472 lines
15 KiB
Go

package sshpolicy
import (
"bytes"
"crypto/x509"
"fmt"
"reflect"
"strings"
"github.com/pkg/errors"
"golang.org/x/crypto/ssh"
)
type CertificateInvalidError struct {
Reason x509.InvalidReason
Detail string
}
func (e CertificateInvalidError) Error() string {
switch e.Reason {
// TODO: include logical errors for this package; exlude ones that don't make sense for its current use case?
// TODO: currently only CANotAuthorizedForThisName is used by this package; we're not checking the other things in CSRs in this package.
case x509.NotAuthorizedToSign:
return "not authorized to sign other certificates" // TODO: this one doesn't make sense for this pkg
case x509.Expired:
return "csr has expired or is not yet valid: " + e.Detail
case x509.CANotAuthorizedForThisName:
return "not authorized to sign for this name: " + e.Detail
case x509.CANotAuthorizedForExtKeyUsage:
return "not authorized for an extended key usage: " + e.Detail
case x509.TooManyIntermediates:
return "too many intermediates for path length constraint"
case x509.IncompatibleUsage:
return "csr specifies an incompatible key usage"
case x509.NameMismatch:
return "issuer name does not match subject from issuing certificate"
case x509.NameConstraintsWithoutSANs:
return "issuer has name constraints but csr doesn't have a SAN extension"
case x509.UnconstrainedName:
return "issuer has name constraints but csr contains unknown or unconstrained name: " + e.Detail
}
return "unknown error"
}
type NamePolicyEngine struct {
options []NamePolicyOption
permittedDNSDomains []string
excludedDNSDomains []string
permittedEmailAddresses []string
excludedEmailAddresses []string
permittedPrincipals []string // TODO: rename to usernames, as principals can be host, user@ (like mail) and usernames?
excludedPrincipals []string
}
func New(opts ...NamePolicyOption) (*NamePolicyEngine, error) {
e := &NamePolicyEngine{} // TODO: embed an x509 engine instead of building it again?
e.options = append(e.options, opts...)
for _, option := range e.options {
if err := option(e); err != nil {
return nil, err
}
}
return e, nil
}
func (e *NamePolicyEngine) ArePrincipalsAllowed(cert *ssh.Certificate) (bool, error) {
dnsNames, emails, userNames := splitPrincipals(cert.ValidPrincipals)
if err := e.validateNames(dnsNames, emails, userNames); err != nil {
return false, err
}
return true, nil
}
func (e *NamePolicyEngine) validateNames(dnsNames, emails, userNames []string) error {
//"dns": ["*.smallstep.com"],
//"email": ["@smallstep.com", "@google.com"],
//"principal": ["max", "mariano", "mike"]
/* No regexes for now. But if we ever implement them, they'd probably look like this */
/*"principal": ["foo.smallstep.com", "/^*\.smallstep\.com$/"]*/
// Principals can be single user names (mariano, max, mike, ...), hostnames/domains (*.smallstep.com, host.smallstep.com, ...) and "emails" (max@smallstep.com, @smallstep.com, ...)
// All ValidPrincipals can thus be any one of those, and they can be mixed (mike@smallstep.com, mike, ...); we need to split this?
// Should we assume a generic engine, or can we do it host vs. user based? If host vs. user based, then it becomes easier w.r.t. dns; hosts will only be DNS, right?
// If we assume generic, we _may_ have a harder time distinguishing host vs. user certs. We propose to use host + user specific provisioners, though...
// Perhaps we can do some heuristics on the principal names vs. hostnames (i.e. when only a single label and no dot, then it's a user principal)
for _, dns := range dnsNames {
if _, ok := domainToReverseLabels(dns); !ok {
return errors.Errorf("cannot parse dns %q", dns)
}
if err := checkNameConstraints("dns", dns, dns,
func(parsedName, constraint interface{}) (bool, error) {
return matchDomainConstraint(parsedName.(string), constraint.(string))
}, e.permittedDNSDomains, e.excludedDNSDomains); err != nil {
return err
}
}
for _, email := range emails {
mailbox, ok := parseRFC2821Mailbox(email)
if !ok {
return fmt.Errorf("cannot parse rfc822Name %q", mailbox)
}
if err := checkNameConstraints("email", email, mailbox,
func(parsedName, constraint interface{}) (bool, error) {
return matchEmailConstraint(parsedName.(rfc2821Mailbox), constraint.(string))
}, e.permittedEmailAddresses, e.excludedEmailAddresses); err != nil {
return err
}
}
for _, userName := range userNames {
// TODO: some validation? I.e. allowed characters?
if err := checkNameConstraints("username", userName, userName,
func(parsedName, constraint interface{}) (bool, error) {
return matchUserNameConstraint(parsedName.(string), constraint.(string))
}, e.permittedPrincipals, e.excludedPrincipals); err != nil {
return err
}
}
return nil
}
// splitPrincipals splits SSH certificate principals into DNS names, emails and user names.
func splitPrincipals(principals []string) (dnsNames, emails, userNames []string) {
dnsNames = []string{}
emails = []string{}
userNames = []string{}
for _, principal := range principals {
if strings.Contains(principal, "@") {
emails = append(emails, principal)
} else if len(strings.Split(principal, ".")) > 1 {
dnsNames = append(dnsNames, principal)
} else {
userNames = append(userNames, principal)
}
}
return
}
// checkNameConstraints checks that c permits a child certificate to claim the
// given name, of type nameType. The argument parsedName contains the parsed
// form of name, suitable for passing to the match function. The total number
// of comparisons is tracked in the given count and should not exceed the given
// limit.
// SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go
func checkNameConstraints(
nameType string,
name string,
parsedName interface{},
match func(parsedName, constraint interface{}) (match bool, err error),
permitted, excluded interface{}) error {
excludedValue := reflect.ValueOf(excluded)
// *count += excludedValue.Len()
// if *count > maxConstraintComparisons {
// return x509.CertificateInvalidError{c, x509.TooManyConstraints, ""}
// }
// TODO: fix the errors; return our own, because we don't have cert ...
for i := 0; i < excludedValue.Len(); i++ {
constraint := excludedValue.Index(i).Interface()
match, err := match(parsedName, constraint)
if err != nil {
return CertificateInvalidError{
Reason: x509.CANotAuthorizedForThisName,
Detail: err.Error(),
}
}
if match {
return CertificateInvalidError{
Reason: x509.CANotAuthorizedForThisName,
Detail: fmt.Sprintf("%s %q is excluded by constraint %q", nameType, name, constraint),
}
}
}
permittedValue := reflect.ValueOf(permitted)
// *count += permittedValue.Len()
// if *count > maxConstraintComparisons {
// return x509.CertificateInvalidError{c, x509.TooManyConstraints, ""}
// }
ok := true
for i := 0; i < permittedValue.Len(); i++ {
constraint := permittedValue.Index(i).Interface()
var err error
if ok, err = match(parsedName, constraint); err != nil {
return CertificateInvalidError{
Reason: x509.CANotAuthorizedForThisName,
Detail: err.Error(),
}
}
if ok {
break
}
}
if !ok {
return CertificateInvalidError{
Reason: x509.CANotAuthorizedForThisName,
Detail: fmt.Sprintf("%s %q is not permitted by any constraint", nameType, name),
}
}
return nil
}
// SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go
func matchDomainConstraint(domain, constraint string) (bool, error) {
// The meaning of zero length constraints is not specified, but this
// code follows NSS and accepts them as matching everything.
if constraint == "" {
return true, nil
}
domainLabels, ok := domainToReverseLabels(domain)
if !ok {
return false, fmt.Errorf("cannot parse domain %q", domain)
}
// RFC 5280 says that a leading period in a domain name means that at
// least one label must be prepended, but only for URI and email
// constraints, not DNS constraints. The code also supports that
// behavior for DNS constraints.
mustHaveSubdomains := false
if constraint[0] == '.' {
mustHaveSubdomains = true
constraint = constraint[1:]
}
constraintLabels, ok := domainToReverseLabels(constraint)
if !ok {
return false, fmt.Errorf("cannot parse domain %q", constraint)
}
if len(domainLabels) < len(constraintLabels) ||
(mustHaveSubdomains && len(domainLabels) == len(constraintLabels)) {
return false, nil
}
for i, constraintLabel := range constraintLabels {
if !strings.EqualFold(constraintLabel, domainLabels[i]) {
return false, nil
}
}
return true, nil
}
// SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go
func matchEmailConstraint(mailbox rfc2821Mailbox, constraint string) (bool, error) {
// If the constraint contains an @, then it specifies an exact mailbox name.
if strings.Contains(constraint, "@") {
constraintMailbox, ok := parseRFC2821Mailbox(constraint)
if !ok {
return false, fmt.Errorf("cannot parse constraint %q", constraint)
}
return mailbox.local == constraintMailbox.local && strings.EqualFold(mailbox.domain, constraintMailbox.domain), nil
}
// Otherwise the constraint is like a DNS constraint of the domain part
// of the mailbox.
return matchDomainConstraint(mailbox.domain, constraint)
}
// matchUserNameConstraint performs a string literal match against a constraint
func matchUserNameConstraint(userName, constraint string) (bool, error) {
return userName == constraint, nil
}
// TODO: decrease code duplication: single policy engine again, with principals added, but not used in x509?
// Not sure how I'd like to model that in Go, though: use (embedded) structs? interfaces? An x509 name policy engine
// interface could expose the methods that are useful to x509; the SSH name policy engine interfaces could do the
// same for SSH ones. One interface for both (with no methods?); then two, so that not all name policy options
// can be executed on both types? The shared ones could then maybe use the one with no methods? But we need protect
// it from being applied to just any type, of course. Not sure if Go allows us to do something like that, though.
// Maybe some kind of dummy function helps there?
// domainToReverseLabels converts a textual domain name like foo.example.com to
// the list of labels in reverse order, e.g. ["com", "example", "foo"].
// SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go
func domainToReverseLabels(domain string) (reverseLabels []string, ok bool) {
for len(domain) > 0 {
if i := strings.LastIndexByte(domain, '.'); i == -1 {
reverseLabels = append(reverseLabels, domain)
domain = ""
} else {
reverseLabels = append(reverseLabels, domain[i+1:])
domain = domain[:i]
}
}
if len(reverseLabels) > 0 && reverseLabels[0] == "" {
// An empty label at the end indicates an absolute value.
return nil, false
}
for _, label := range reverseLabels {
if label == "" {
// Empty labels are otherwise invalid.
return nil, false
}
for _, c := range label {
if c < 33 || c > 126 {
// Invalid character.
return nil, false
}
}
}
return reverseLabels, true
}
// rfc2821Mailbox represents a “mailbox” (which is an email address to most
// people) by breaking it into the “local” (i.e. before the '@') and “domain”
// parts.
// SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go
type rfc2821Mailbox struct {
local, domain string
}
// parseRFC2821Mailbox parses an email address into local and domain parts,
// based on the ABNF for a “Mailbox” from RFC 2821. According to RFC 5280,
// Section 4.2.1.6 that's correct for an rfc822Name from a certificate: “The
// format of an rfc822Name is a "Mailbox" as defined in RFC 2821, Section 4.1.2”.
// SOURCE: https://cs.opensource.google/go/go/+/refs/tags/go1.17.5:src/crypto/x509/verify.go
func parseRFC2821Mailbox(in string) (mailbox rfc2821Mailbox, ok bool) {
if in == "" {
return mailbox, false
}
localPartBytes := make([]byte, 0, len(in)/2)
if in[0] == '"' {
// Quoted-string = DQUOTE *qcontent DQUOTE
// non-whitespace-control = %d1-8 / %d11 / %d12 / %d14-31 / %d127
// qcontent = qtext / quoted-pair
// qtext = non-whitespace-control /
// %d33 / %d35-91 / %d93-126
// quoted-pair = ("\" text) / obs-qp
// text = %d1-9 / %d11 / %d12 / %d14-127 / obs-text
//
// (Names beginning with “obs-” are the obsolete syntax from RFC 2822,
// Section 4. Since it has been 16 years, we no longer accept that.)
in = in[1:]
QuotedString:
for {
if in == "" {
return mailbox, false
}
c := in[0]
in = in[1:]
switch {
case c == '"':
break QuotedString
case c == '\\':
// quoted-pair
if in == "" {
return mailbox, false
}
if in[0] == 11 ||
in[0] == 12 ||
(1 <= in[0] && in[0] <= 9) ||
(14 <= in[0] && in[0] <= 127) {
localPartBytes = append(localPartBytes, in[0])
in = in[1:]
} else {
return mailbox, false
}
case c == 11 ||
c == 12 ||
// Space (char 32) is not allowed based on the
// BNF, but RFC 3696 gives an example that
// assumes that it is. Several “verified”
// errata continue to argue about this point.
// We choose to accept it.
c == 32 ||
c == 33 ||
c == 127 ||
(1 <= c && c <= 8) ||
(14 <= c && c <= 31) ||
(35 <= c && c <= 91) ||
(93 <= c && c <= 126):
// qtext
localPartBytes = append(localPartBytes, c)
default:
return mailbox, false
}
}
} else {
// Atom ("." Atom)*
NextChar:
for len(in) > 0 {
// atext from RFC 2822, Section 3.2.4
c := in[0]
switch {
case c == '\\':
// Examples given in RFC 3696 suggest that
// escaped characters can appear outside of a
// quoted string. Several “verified” errata
// continue to argue the point. We choose to
// accept it.
in = in[1:]
if in == "" {
return mailbox, false
}
fallthrough
case ('0' <= c && c <= '9') ||
('a' <= c && c <= 'z') ||
('A' <= c && c <= 'Z') ||
c == '!' || c == '#' || c == '$' || c == '%' ||
c == '&' || c == '\'' || c == '*' || c == '+' ||
c == '-' || c == '/' || c == '=' || c == '?' ||
c == '^' || c == '_' || c == '`' || c == '{' ||
c == '|' || c == '}' || c == '~' || c == '.':
localPartBytes = append(localPartBytes, in[0])
in = in[1:]
default:
break NextChar
}
}
if len(localPartBytes) == 0 {
return mailbox, false
}
// From RFC 3696, Section 3:
// “period (".") may also appear, but may not be used to start
// or end the local part, nor may two or more consecutive
// periods appear.”
twoDots := []byte{'.', '.'}
if localPartBytes[0] == '.' ||
localPartBytes[len(localPartBytes)-1] == '.' ||
bytes.Contains(localPartBytes, twoDots) {
return mailbox, false
}
}
if in == "" || in[0] != '@' {
return mailbox, false
}
in = in[1:]
// The RFC species a format for domains, but that's known to be
// violated in practice so we accept that anything after an '@' is the
// domain part.
if _, ok := domainToReverseLabels(in); !ok {
return mailbox, false
}
mailbox.local = string(localPartBytes)
mailbox.domain = in
return mailbox, true
}