neo-go/pkg/core/blockchain.go

2024 lines
66 KiB
Go
Raw Normal View History

package core
import (
2020-09-24 13:33:40 +00:00
"bytes"
"errors"
"fmt"
"math"
"math/big"
"sort"
"sync"
"sync/atomic"
"time"
"github.com/nspcc-dev/neo-go/pkg/config"
"github.com/nspcc-dev/neo-go/pkg/core/block"
2020-11-27 10:55:48 +00:00
"github.com/nspcc-dev/neo-go/pkg/core/blockchainer"
"github.com/nspcc-dev/neo-go/pkg/core/blockchainer/services"
2020-04-07 09:41:12 +00:00
"github.com/nspcc-dev/neo-go/pkg/core/dao"
"github.com/nspcc-dev/neo-go/pkg/core/interop"
2021-01-19 08:23:39 +00:00
"github.com/nspcc-dev/neo-go/pkg/core/interop/contract"
"github.com/nspcc-dev/neo-go/pkg/core/mempool"
2020-03-19 15:52:37 +00:00
"github.com/nspcc-dev/neo-go/pkg/core/native"
"github.com/nspcc-dev/neo-go/pkg/core/native/noderoles"
"github.com/nspcc-dev/neo-go/pkg/core/state"
"github.com/nspcc-dev/neo-go/pkg/core/stateroot"
"github.com/nspcc-dev/neo-go/pkg/core/storage"
"github.com/nspcc-dev/neo-go/pkg/core/transaction"
"github.com/nspcc-dev/neo-go/pkg/crypto/hash"
"github.com/nspcc-dev/neo-go/pkg/crypto/keys"
"github.com/nspcc-dev/neo-go/pkg/encoding/bigint"
"github.com/nspcc-dev/neo-go/pkg/encoding/fixedn"
"github.com/nspcc-dev/neo-go/pkg/io"
"github.com/nspcc-dev/neo-go/pkg/smartcontract"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/callflag"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/manifest"
"github.com/nspcc-dev/neo-go/pkg/smartcontract/trigger"
"github.com/nspcc-dev/neo-go/pkg/util"
"github.com/nspcc-dev/neo-go/pkg/vm"
"github.com/nspcc-dev/neo-go/pkg/vm/stackitem"
2019-12-30 07:43:05 +00:00
"go.uber.org/zap"
)
2019-10-22 14:56:03 +00:00
// Tuning parameters.
const (
headerBatchCount = 2000
version = "0.1.1"
defaultInitialGAS = 52000000_00000000
2020-11-27 10:55:48 +00:00
defaultMemPoolSize = 50000
defaultP2PNotaryRequestPayloadPoolSize = 1000
2021-03-15 10:00:04 +00:00
defaultMaxBlockSize = 262144
2021-03-15 10:51:07 +00:00
defaultMaxBlockSystemFee = 900000000000
defaultMaxTraceableBlocks = 2102400 // 1 year of 15s blocks
defaultMaxTransactionsPerBlock = 512
// HeaderVerificationGasLimit is the maximum amount of GAS for block header verification.
HeaderVerificationGasLimit = 3_00000000 // 3 GAS
)
var (
// ErrAlreadyExists is returned when trying to add some already existing
// transaction into the pool (not specifying whether it exists in the
// chain or mempool).
ErrAlreadyExists = errors.New("already exists")
// ErrOOM is returned when adding transaction to the memory pool because
// it reached its full capacity.
ErrOOM = errors.New("no space left in the memory pool")
// ErrPolicy is returned on attempt to add transaction that doesn't
// comply with node's configured policy into the mempool.
ErrPolicy = errors.New("not allowed by policy")
// ErrInvalidBlockIndex is returned when trying to add block with index
// other than expected height of the blockchain.
ErrInvalidBlockIndex error = errors.New("invalid block index")
// ErrHasConflicts is returned when trying to add some transaction which
// conflicts with other transaction in the chain or pool according to
// Conflicts attribute.
ErrHasConflicts = errors.New("has conflicts")
)
var (
2020-08-26 09:07:30 +00:00
persistInterval = 1 * time.Second
)
2020-05-07 19:04:10 +00:00
// Blockchain represents the blockchain. It maintans internal state representing
// the state of the ledger that can be accessed in various ways and changed by
// adding new blocks or headers.
type Blockchain struct {
config config.ProtocolConfiguration
// The only way chain state changes is by adding blocks, so we can't
// allow concurrent block additions. It differs from the next lock in
// that it's only for AddBlock method itself, the chain state is
// protected by the lock below, but holding it during all of AddBlock
// is too expensive (because the state only changes when persisting
// change cache).
addLock sync.Mutex
// This lock ensures blockchain immutability for operations that need
// that while performing their tasks. It's mostly used as a read lock
// with the only writer being the block addition logic.
lock sync.RWMutex
// Data access object for CRUD operations around storage. It's write-cached.
2020-04-07 09:41:12 +00:00
dao *dao.Simple
// persistent is the same DB as dao, but we never write to it, so all reads
// are directly from underlying persistent store.
persistent *dao.Simple
// Current index/height of the highest block.
// Read access should always be called by BlockHeight().
// Write access should only happen in storeBlock().
blockHeight uint32
// Current top Block wrapped in an atomic.Value for safe access.
topBlock atomic.Value
// Current persisted block count.
persistedHeight uint32
// Number of headers stored in the chain file.
storedHeaderCount uint32
// Header hashes list with associated lock.
headerHashesLock sync.RWMutex
headerHashes []util.Uint256
// Stop synchronization mechanisms.
stopCh chan struct{}
runToExitCh chan struct{}
memPool *mempool.Pool
2020-11-27 10:55:48 +00:00
// postBlock is a set of callback methods which should be run under the Blockchain lock after new block is persisted.
// Block's transactions are passed via mempool.
postBlock []func(blockchainer.Blockchainer, *mempool.Pool, *block.Block)
sbCommittee keys.PublicKeys
2019-12-30 07:43:05 +00:00
log *zap.Logger
lastBatch *storage.MemBatch
2020-03-19 15:52:37 +00:00
contracts native.Contracts
extensible atomic.Value
2021-03-15 10:00:04 +00:00
// defaultBlockWitness stores transaction.Witness with m out of n multisig,
// where n = ValidatorsCount.
defaultBlockWitness atomic.Value
stateRoot *stateroot.Module
// Notification subsystem.
events chan bcEvent
subCh chan interface{}
unsubCh chan interface{}
}
// bcEvent is an internal event generated by the Blockchain and then
// broadcasted to other parties. It joins the new block and associated
// invocation logs, all the other events visible from outside can be produced
// from this combination.
type bcEvent struct {
block *block.Block
appExecResults []*state.AppExecResult
}
2019-10-22 14:56:03 +00:00
// NewBlockchain returns a new blockchain object the will use the
2020-05-07 19:04:10 +00:00
// given Store as its underlying storage. For it to work correctly you need
// to spawn a goroutine for its Run method after this initialization.
2019-12-30 07:43:05 +00:00
func NewBlockchain(s storage.Store, cfg config.ProtocolConfiguration, log *zap.Logger) (*Blockchain, error) {
if log == nil {
return nil, errors.New("empty logger")
}
if cfg.InitialGASSupply <= 0 {
cfg.InitialGASSupply = fixedn.Fixed8(defaultInitialGAS)
log.Info("initial gas supply is not set or wrong, setting default value", zap.String("InitialGASSupply", cfg.InitialGASSupply.String()))
}
if cfg.MemPoolSize <= 0 {
cfg.MemPoolSize = defaultMemPoolSize
log.Info("mempool size is not set or wrong, setting default value", zap.Int("MemPoolSize", cfg.MemPoolSize))
}
2020-11-27 10:55:48 +00:00
if cfg.P2PSigExtensions && cfg.P2PNotaryRequestPayloadPoolSize <= 0 {
cfg.P2PNotaryRequestPayloadPoolSize = defaultP2PNotaryRequestPayloadPoolSize
log.Info("P2PNotaryRequestPayloadPool size is not set or wrong, setting default value", zap.Int("P2PNotaryRequestPayloadPoolSize", cfg.P2PNotaryRequestPayloadPoolSize))
}
2021-03-15 10:00:04 +00:00
if cfg.MaxBlockSize == 0 {
cfg.MaxBlockSize = defaultMaxBlockSize
log.Info("MaxBlockSize is not set or wrong, setting default value", zap.Uint32("MaxBlockSize", cfg.MaxBlockSize))
}
2021-03-15 10:51:07 +00:00
if cfg.MaxBlockSystemFee <= 0 {
cfg.MaxBlockSystemFee = defaultMaxBlockSystemFee
log.Info("MaxBlockSystemFee is not set or wrong, setting default value", zap.Int64("MaxBlockSystemFee", cfg.MaxBlockSystemFee))
}
if cfg.MaxTraceableBlocks == 0 {
cfg.MaxTraceableBlocks = defaultMaxTraceableBlocks
log.Info("MaxTraceableBlocks is not set or wrong, using default value", zap.Uint32("MaxTraceableBlocks", cfg.MaxTraceableBlocks))
}
if cfg.MaxTransactionsPerBlock == 0 {
cfg.MaxTransactionsPerBlock = defaultMaxTransactionsPerBlock
log.Info("MaxTransactionsPerBlock is not set or wrong, using default value",
zap.Uint16("MaxTransactionsPerBlock", cfg.MaxTransactionsPerBlock))
}
if cfg.MaxValidUntilBlockIncrement == 0 {
const secondsPerDay = int(24 * time.Hour / time.Second)
cfg.MaxValidUntilBlockIncrement = uint32(secondsPerDay / cfg.SecondsPerBlock)
log.Info("MaxValidUntilBlockIncrement is not set or wrong, using default value",
zap.Uint32("MaxValidUntilBlockIncrement", cfg.MaxValidUntilBlockIncrement))
}
committee, err := committeeFromConfig(cfg)
if err != nil {
return nil, err
}
2021-03-11 11:39:51 +00:00
if len(cfg.NativeUpdateHistories) == 0 {
cfg.NativeUpdateHistories = map[string][]uint32{}
log.Info("NativeActivations are not set, using default values")
}
bc := &Blockchain{
config: cfg,
dao: dao.NewSimple(s, cfg.StateRootInHeader),
persistent: dao.NewSimple(s, cfg.StateRootInHeader),
stopCh: make(chan struct{}),
runToExitCh: make(chan struct{}),
2021-01-15 12:40:15 +00:00
memPool: mempool.New(cfg.MemPoolSize, 0, false),
sbCommittee: committee,
log: log,
events: make(chan bcEvent),
subCh: make(chan interface{}),
unsubCh: make(chan interface{}),
contracts: *native.NewContracts(cfg),
}
bc.stateRoot = stateroot.NewModule(bc, bc.log, bc.dao.Store)
bc.contracts.Designate.StateRootService = bc.stateRoot
if err := bc.init(); err != nil {
return nil, err
}
return bc, nil
}
// SetOracle sets oracle module. It doesn't protected by mutex and
// must be called before `bc.Run()` to avoid data race.
func (bc *Blockchain) SetOracle(mod services.Oracle) {
orc := bc.contracts.Oracle
md, ok := orc.GetMethod(manifest.MethodVerify, -1)
if !ok {
panic(fmt.Errorf("%s method not found", manifest.MethodVerify))
}
mod.UpdateNativeContract(orc.NEF.Script, orc.GetOracleResponseScript(),
orc.Hash, md.MD.Offset)
orc.Module.Store(mod)
bc.contracts.Designate.OracleService.Store(mod)
}
2020-12-30 08:01:13 +00:00
// SetNotary sets notary module. It doesn't protected by mutex and
// must be called before `bc.Run()` to avoid data race.
func (bc *Blockchain) SetNotary(mod services.Notary) {
bc.contracts.Designate.NotaryService.Store(mod)
}
func (bc *Blockchain) init() error {
// If we could not find the version in the Store, we know that there is nothing stored.
ver, err := bc.dao.GetVersion()
if err != nil {
2019-12-30 07:43:05 +00:00
bc.log.Info("no storage version found! creating genesis block")
if err = bc.dao.PutVersion(version); err != nil {
return err
}
genesisBlock, err := createGenesisBlock(bc.config)
if err != nil {
return err
}
bc.headerHashes = []util.Uint256{genesisBlock.Hash()}
err = bc.dao.PutCurrentHeader(hashAndIndexToBytes(genesisBlock.Hash(), genesisBlock.Index))
if err != nil {
return err
}
if err := bc.stateRoot.Init(0, bc.config.KeepOnlyLatestState); err != nil {
return fmt.Errorf("can't init MPT: %w", err)
}
return bc.storeBlock(genesisBlock, nil)
}
if ver != version {
return fmt.Errorf("storage version mismatch betweeen %s and %s", version, ver)
}
// At this point there was no version found in the storage which
// implies a creating fresh storage with the version specified
// and the genesis block as first block.
2019-12-30 07:43:05 +00:00
bc.log.Info("restoring blockchain", zap.String("version", version))
bHeight, err := bc.dao.GetCurrentBlockHeight()
if err != nil {
return err
}
bc.blockHeight = bHeight
bc.persistedHeight = bHeight
if err = bc.stateRoot.Init(bHeight, bc.config.KeepOnlyLatestState); err != nil {
return fmt.Errorf("can't init MPT at height %d: %w", bHeight, err)
}
bc.headerHashes, err = bc.dao.GetHeaderHashes()
if err != nil {
return err
}
bc.storedHeaderCount = uint32(len(bc.headerHashes))
currHeaderHeight, currHeaderHash, err := bc.dao.GetCurrentHeaderHeight()
if err != nil {
return err
}
if bc.storedHeaderCount == 0 && currHeaderHeight == 0 {
bc.headerHashes = append(bc.headerHashes, currHeaderHash)
}
// There is a high chance that the Node is stopped before the next
// batch of 2000 headers was stored. Via the currentHeaders stored we can sync
// that with stored blocks.
if currHeaderHeight >= bc.storedHeaderCount {
hash := currHeaderHash
var targetHash util.Uint256
if len(bc.headerHashes) > 0 {
targetHash = bc.headerHashes[len(bc.headerHashes)-1]
} else {
genesisBlock, err := createGenesisBlock(bc.config)
if err != nil {
return err
}
targetHash = genesisBlock.Hash()
bc.headerHashes = append(bc.headerHashes, targetHash)
}
headers := make([]*block.Header, 0)
for hash != targetHash {
Implemented rpc server method GetRawTransaction (#135) * Added utility function GetVarSize * 1) Added Size method: this implied that Fixed8 implements now the serializable interface. 2) Added few arithmetic operation (Add, Sub, div): this will be used to calculated networkfeeand feePerByte. Changed return value of the Value() method to int instead of int64. Modified fixed8_test accordingly. * Implemented Size or MarshalJSON method. - Structs accepting the Size method implement the serializable interface. - Structs accepting the MarshalJSON method implements the customized json marshaller interface. * Added fee calculation * Implemented rcp server method GetRawTransaction * Updated Tests * Fixed: 1) NewFixed8 will accept as input int64 2) race condition affecting configDeafault, blockchainDefault * Simplified Size calculation * 1) Removed global variable blockchainDefault, configDefault 2) Extended Blockchainer interface to include the methods: References, FeePerByte, SystemFee, NetworkFee 3) Deleted fee_test.go, fee.go. Moved corresponding methods to blockchain_test.go and blockchain.go respectively 4) Amended tx_raw_output.go * Simplified GetVarSize Method * Replaced ValueAtAndType with ValueWithType * Cosmetic changes + Added test case getrawtransaction_7 * Clean up Print statement * Filled up keys * Aligned verbose logic with the C#-neo implementation * Implemented @Kim requests Refactor server_test.go * Small fixes * Fixed verbose logic Added more tests Cosmetic changes * Replaced assert.NoError with require.NoError * Fixed tests by adding context.Background() as argument * Fixed tests
2019-02-20 17:39:32 +00:00
header, err := bc.GetHeader(hash)
if err != nil {
return fmt.Errorf("could not get header %s: %w", hash, err)
}
headers = append(headers, header)
hash = header.PrevHash
}
headerSliceReverse(headers)
for _, h := range headers {
bc.headerHashes = append(bc.headerHashes, h.Hash())
}
}
core: add InitializeCache method to NEO native contracts There might be a case when cached contract values store nil (e.g. after restoring chain from dump). We should always initialize cached values irrespective to the (NEO).Initialize method. This commit fixes a bug introduced in 83e94d3 when 4-nodes privnet is failing after restoring from dump: ``` $ docker logs neo_go_node_one => Try to restore blocks before running node 2020-09-30T11:55:49.122Z INFO no storage version found! creating genesis block 2020-09-30T11:55:49.124Z INFO service hasn't started since it's disabled {"service": "Pprof"} 2020-09-30T11:55:49.124Z INFO service hasn't started since it's disabled {"service": "Prometheus"} 2020-09-30T11:55:49.124Z INFO skipped genesis block {"hash": "3792eaa22c196399a114666fd491c4b9ac52491d9abb1f633a8036a8ac81e4db"} 2020-09-30T11:55:49.141Z INFO shutting down service {"service": "Pprof", "endpoint": ":30001"} 2020-09-30T11:55:49.141Z INFO shutting down service {"service": "Prometheus", "endpoint": ":40001"} 2020-09-30T11:55:49.141Z INFO blockchain persist completed {"persistedBlocks": 3, "persistedKeys": 146, "headerHeight": 3, "blockHeight": 3, "took": "324.27µs"} 2020-09-30T11:55:49.150Z INFO restoring blockchain {"version": "0.1.0"} 2020-09-30T11:55:49.150Z INFO service hasn't started since it's disabled {"service": "Prometheus"} 2020-09-30T11:55:49.151Z INFO service hasn't started since it's disabled {"service": "Pprof"} 2020-09-30T11:55:49.443Z INFO starting rpc-server {"endpoint": ":30333"} 2020-09-30T11:55:49.443Z INFO node started {"blockHeight": 3, "headerHeight": 3} _ ____________ __________ / | / / ____/ __ \ / ____/ __ \ / |/ / __/ / / / /_____/ / __/ / / / / /| / /___/ /_/ /_____/ /_/ / /_/ / /_/ |_/_____/\____/ \____/\____/ /NEO-GO:/ 2020-09-30T11:55:49.444Z INFO new peer connected {"addr": "172.23.0.5:39638", "peerCount": 1} 2020-09-30T11:55:49.444Z INFO new peer connected {"addr": "172.23.0.5:20333", "peerCount": 2} 2020-09-30T11:55:49.444Z WARN peer disconnected {"addr": "172.23.0.5:20333", "reason": "identical node id", "peerCount": 1} 2020-09-30T11:55:49.445Z WARN peer disconnected {"addr": "172.23.0.5:39638", "reason": "identical node id", "peerCount": 0} 2020-09-30T11:55:49.445Z INFO new peer connected {"addr": "172.23.0.3:20335", "peerCount": 1} 2020-09-30T11:55:49.445Z INFO new peer connected {"addr": "172.23.0.2:20334", "peerCount": 2} 2020-09-30T11:55:49.445Z INFO started protocol {"addr": "172.23.0.3:20335", "userAgent": "/NEO-GO:/", "startHeight": 3, "id": 1339919829} 2020-09-30T11:55:49.445Z INFO new peer connected {"addr": "172.23.0.4:20336", "peerCount": 3} 2020-09-30T11:55:49.445Z INFO started protocol {"addr": "172.23.0.4:20336", "userAgent": "/NEO-GO:/", "startHeight": 3, "id": 4036722359} 2020-09-30T11:55:49.445Z INFO node reached synchronized state, starting consensus 2020-09-30T11:55:49.445Z INFO started protocol {"addr": "172.23.0.2:20334", "userAgent": "/NEO-GO:/", "startHeight": 3, "id": 1557367037} panic: runtime error: integer divide by zero goroutine 132 [running]: github.com/nspcc-dev/dbft.(*Context).GetPrimaryIndex(...) github.com/nspcc-dev/dbft@v0.0.0-20200925163137-8f3b9ab3b720/context.go:83 github.com/nspcc-dev/dbft.(*Context).reset(0xc0000e0780, 0x0) github.com/nspcc-dev/dbft@v0.0.0-20200925163137-8f3b9ab3b720/context.go:208 +0x64b github.com/nspcc-dev/dbft.(*DBFT).InitializeConsensus(0xc0000e0780, 0x964800) github.com/nspcc-dev/dbft@v0.0.0-20200925163137-8f3b9ab3b720/dbft.go:87 +0x51 github.com/nspcc-dev/dbft.(*DBFT).Start(0xc0000e0780) github.com/nspcc-dev/dbft@v0.0.0-20200925163137-8f3b9ab3b720/dbft.go:81 +0x4b github.com/nspcc-dev/neo-go/pkg/consensus.(*service).Start(0xc0001a2160) github.com/nspcc-dev/neo-go/pkg/consensus/consensus.go:206 +0x56 github.com/nspcc-dev/neo-go/pkg/network.(*Server).tryStartConsensus(0xc0000ec500) github.com/nspcc-dev/neo-go/pkg/network/server.go:311 +0xda github.com/nspcc-dev/neo-go/pkg/network.(*Server).handleMessage(0xc0000ec500, 0x104d800, 0xc000222090, 0xc0000a6f10, 0x0, 0x0) github.com/nspcc-dev/neo-go/pkg/network/server.go:781 +0xa7a github.com/nspcc-dev/neo-go/pkg/network.(*TCPPeer).handleConn(0xc000222090) github.com/nspcc-dev/neo-go/pkg/network/tcp_peer.go:162 +0x2e7 created by github.com/nspcc-dev/neo-go/pkg/network.(*TCPTransport).Dial github.com/nspcc-dev/neo-go/pkg/network/tcp_transport.go:40 +0x1ac ```
2020-10-02 11:44:42 +00:00
err = bc.contracts.NEO.InitializeCache(bc, bc.dao)
if err != nil {
return fmt.Errorf("can't init cache for NEO native contract: %w", err)
}
err = bc.contracts.Management.InitializeCache(bc.dao)
if err != nil {
return fmt.Errorf("can't init cache for Management native contract: %w", err)
}
// Check autogenerated native contracts' manifests and NEFs against the stored ones.
// Need to be done after native Management cache initialisation to be able to get
// contract state from DAO via high-level bc API.
for _, c := range bc.contracts.Contracts {
md := c.Metadata()
history := md.UpdateHistory
if len(history) == 0 || history[0] > bHeight {
continue
}
storedCS := bc.GetContractState(md.Hash)
if storedCS == nil {
return fmt.Errorf("native contract %s is not stored", md.Name)
}
storedCSBytes, err := stackitem.SerializeConvertible(storedCS)
if err != nil {
return fmt.Errorf("failed to check native %s state against autogenerated one: %w", md.Name, err)
}
autogenCS := &state.Contract{
ContractBase: md.ContractBase,
UpdateCounter: storedCS.UpdateCounter, // it can be restored only from the DB, so use the stored value.
}
autogenCSBytes, err := stackitem.SerializeConvertible(autogenCS)
if err != nil {
return fmt.Errorf("failed to check native %s state against autogenerated one: %w", md.Name, err)
}
if !bytes.Equal(storedCSBytes, autogenCSBytes) {
return fmt.Errorf("native %s: version mismatch (stored contract state differs from autogenerated one), "+
"try to resynchronize the node from the genesis", md.Name)
}
}
return bc.updateExtensibleWhitelist(bHeight)
}
2020-05-07 19:04:10 +00:00
// Run runs chain loop, it needs to be run as goroutine and executing it is
// critical for correct Blockchain operation.
func (bc *Blockchain) Run() {
persistTimer := time.NewTimer(persistInterval)
defer func() {
persistTimer.Stop()
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
if _, err := bc.persist(); err != nil {
2019-12-30 07:43:05 +00:00
bc.log.Warn("failed to persist", zap.Error(err))
}
2020-04-07 09:41:12 +00:00
if err := bc.dao.Store.Close(); err != nil {
2019-12-30 07:43:05 +00:00
bc.log.Warn("failed to close db", zap.Error(err))
}
close(bc.runToExitCh)
}()
go bc.notificationDispatcher()
for {
select {
case <-bc.stopCh:
return
case <-persistTimer.C:
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
dur, err := bc.persist()
if err != nil {
bc.log.Warn("failed to persist blockchain", zap.Error(err))
}
interval := persistInterval - dur
if interval <= 0 {
interval = time.Microsecond // Reset doesn't work with zero value
}
persistTimer.Reset(interval)
}
}
}
// notificationDispatcher manages subscription to events and broadcasts new events.
func (bc *Blockchain) notificationDispatcher() {
var (
// These are just sets of subscribers, though modelled as maps
// for ease of management (not a lot of subscriptions is really
// expected, but maps are convenient for adding/deleting elements).
blockFeed = make(map[chan<- *block.Block]bool)
txFeed = make(map[chan<- *transaction.Transaction]bool)
notificationFeed = make(map[chan<- *state.NotificationEvent]bool)
executionFeed = make(map[chan<- *state.AppExecResult]bool)
)
for {
select {
case <-bc.stopCh:
return
case sub := <-bc.subCh:
switch ch := sub.(type) {
case chan<- *block.Block:
blockFeed[ch] = true
case chan<- *transaction.Transaction:
txFeed[ch] = true
case chan<- *state.NotificationEvent:
notificationFeed[ch] = true
case chan<- *state.AppExecResult:
executionFeed[ch] = true
default:
panic(fmt.Sprintf("bad subscription: %T", sub))
}
case unsub := <-bc.unsubCh:
switch ch := unsub.(type) {
case chan<- *block.Block:
delete(blockFeed, ch)
case chan<- *transaction.Transaction:
delete(txFeed, ch)
case chan<- *state.NotificationEvent:
delete(notificationFeed, ch)
case chan<- *state.AppExecResult:
delete(executionFeed, ch)
default:
panic(fmt.Sprintf("bad unsubscription: %T", unsub))
}
case event := <-bc.events:
// We don't want to waste time looping through transactions when there are no
// subscribers.
if len(txFeed) != 0 || len(notificationFeed) != 0 || len(executionFeed) != 0 {
aer := event.appExecResults[0]
if !aer.Container.Equals(event.block.Hash()) {
panic("inconsistent application execution results")
}
for ch := range executionFeed {
ch <- aer
}
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &aer.Events[i]
}
}
aerIdx := 1
for _, tx := range event.block.Transactions {
aer := event.appExecResults[aerIdx]
if !aer.Container.Equals(tx.Hash()) {
panic("inconsistent application execution results")
}
aerIdx++
for ch := range executionFeed {
ch <- aer
}
if aer.VMState == vm.HaltState {
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &aer.Events[i]
}
}
}
for ch := range txFeed {
ch <- tx
}
}
aer = event.appExecResults[aerIdx]
if !aer.Container.Equals(event.block.Hash()) {
panic("inconsistent application execution results")
}
for ch := range executionFeed {
ch <- aer
}
for i := range aer.Events {
for ch := range notificationFeed {
ch <- &aer.Events[i]
}
}
}
for ch := range blockFeed {
ch <- event.block
}
}
}
}
// Close stops Blockchain's internal loop, syncs changes to persistent storage
// and closes it. The Blockchain is no longer functional after the call to Close.
func (bc *Blockchain) Close() {
// If there is a block addition in progress, wait for it to finish and
// don't allow new ones.
bc.addLock.Lock()
close(bc.stopCh)
<-bc.runToExitCh
bc.addLock.Unlock()
}
// AddBlock accepts successive block for the Blockchain, verifies it and
// stores internally. Eventually it will be persisted to the backing storage.
func (bc *Blockchain) AddBlock(block *block.Block) error {
bc.addLock.Lock()
defer bc.addLock.Unlock()
var mp *mempool.Pool
expectedHeight := bc.BlockHeight() + 1
if expectedHeight != block.Index {
return fmt.Errorf("expected %d, got %d: %w", expectedHeight, block.Index, ErrInvalidBlockIndex)
}
if bc.config.StateRootInHeader != block.StateRootEnabled {
return fmt.Errorf("%w: %v != %v",
ErrHdrStateRootSetting, bc.config.StateRootInHeader, block.StateRootEnabled)
}
if block.Index == bc.HeaderHeight()+1 {
2021-03-01 13:44:47 +00:00
err := bc.addHeaders(bc.config.VerifyBlocks, &block.Header)
if err != nil {
return err
}
}
if bc.config.VerifyBlocks {
merkle := block.ComputeMerkleRoot()
if !block.MerkleRoot.Equals(merkle) {
return errors.New("invalid block: MerkleRoot mismatch")
}
2021-01-15 12:40:15 +00:00
mp = mempool.New(len(block.Transactions), 0, false)
for _, tx := range block.Transactions {
var err error
// Transactions are verified before adding them
// into the pool, so there is no point in doing
// it again even if we're verifying in-block transactions.
if bc.memPool.ContainsKey(tx.Hash()) {
err = mp.Add(tx, bc)
if err == nil {
continue
}
} else {
2020-11-27 10:55:48 +00:00
err = bc.verifyAndPoolTx(tx, mp, bc)
}
if err != nil && bc.config.VerifyTransactions {
return fmt.Errorf("transaction %s failed to verify: %w", tx.Hash().StringLE(), err)
}
}
}
return bc.storeBlock(block, mp)
}
2019-10-22 14:56:03 +00:00
// AddHeaders processes the given headers and add them to the
// HeaderHashList. It expects headers to be sorted by index.
func (bc *Blockchain) AddHeaders(headers ...*block.Header) error {
return bc.addHeaders(bc.config.VerifyBlocks, headers...)
}
// addHeaders is an internal implementation of AddHeaders (`verify` parameter
// tells it to verify or not verify given headers).
func (bc *Blockchain) addHeaders(verify bool, headers ...*block.Header) error {
var (
start = time.Now()
2020-04-07 09:41:12 +00:00
batch = bc.dao.Store.Batch()
err error
)
if len(headers) > 0 {
var i int
curHeight := bc.HeaderHeight()
for i = range headers {
if headers[i].Index > curHeight {
break
}
}
headers = headers[i:]
}
if len(headers) == 0 {
return nil
} else if verify {
// Verify that the chain of the headers is consistent.
var lastHeader *block.Header
if lastHeader, err = bc.GetHeader(headers[0].PrevHash); err != nil {
return fmt.Errorf("previous header was not found: %w", err)
}
for _, h := range headers {
if err = bc.verifyHeader(h, lastHeader); err != nil {
return err
}
lastHeader = h
}
}
buf := io.NewBufBinWriter()
bc.headerHashesLock.Lock()
defer bc.headerHashesLock.Unlock()
oldlen := len(bc.headerHashes)
var lastHeader *block.Header
for _, h := range headers {
if int(h.Index) != len(bc.headerHashes) {
continue
}
bc.headerHashes = append(bc.headerHashes, h.Hash())
h.EncodeBinary(buf.BinWriter)
2021-03-01 13:44:47 +00:00
buf.BinWriter.WriteB(0)
if buf.Err != nil {
return buf.Err
}
key := storage.AppendPrefix(storage.DataBlock, h.Hash().BytesBE())
batch.Put(key, buf.Bytes())
buf.Reset()
lastHeader = h
}
if oldlen != len(bc.headerHashes) {
for int(lastHeader.Index)-headerBatchCount >= int(bc.storedHeaderCount) {
buf.WriteArray(bc.headerHashes[bc.storedHeaderCount : bc.storedHeaderCount+headerBatchCount])
if buf.Err != nil {
return buf.Err
}
key := storage.AppendPrefixInt(storage.IXHeaderHashList, int(bc.storedHeaderCount))
batch.Put(key, buf.Bytes())
bc.storedHeaderCount += headerBatchCount
}
batch.Put(storage.SYSCurrentHeader.Bytes(), hashAndIndexToBytes(lastHeader.Hash(), lastHeader.Index))
updateHeaderHeightMetric(len(bc.headerHashes) - 1)
if err = bc.dao.Store.PutBatch(batch); err != nil {
return err
}
bc.log.Debug("done processing headers",
zap.Int("headerIndex", len(bc.headerHashes)-1),
zap.Uint32("blockHeight", bc.BlockHeight()),
zap.Duration("took", time.Since(start)))
}
return nil
}
// GetStateModule returns state root service instance.
func (bc *Blockchain) GetStateModule() blockchainer.StateRoot {
return bc.stateRoot
}
// storeBlock performs chain update using the block given, it executes all
// transactions with all appropriate side-effects and updates Blockchain state.
// This is the only way to change Blockchain state.
func (bc *Blockchain) storeBlock(block *block.Block, txpool *mempool.Pool) error {
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
var (
cache = bc.dao.GetWrapped()
appExecResults = make([]*state.AppExecResult, 0, 2+len(block.Transactions))
aerchan = make(chan *state.AppExecResult, len(block.Transactions)/8) // Tested 8 and 4 with no practical difference, but feel free to test more and tune.
aerdone = make(chan error)
blockdone = make(chan error)
)
go func() {
var (
kvcache = cache.GetWrapped()
writeBuf = io.NewBufBinWriter()
)
if err := kvcache.StoreAsBlock(block, writeBuf); err != nil {
blockdone <- err
return
}
writeBuf.Reset()
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
if err := kvcache.StoreAsCurrentBlock(block, writeBuf); err != nil {
blockdone <- err
return
}
writeBuf.Reset()
for _, tx := range block.Transactions {
if err := kvcache.StoreAsTransaction(tx, block.Index, writeBuf); err != nil {
blockdone <- err
return
}
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
writeBuf.Reset()
if bc.config.P2PSigExtensions {
for _, attr := range tx.GetAttributes(transaction.ConflictsT) {
hash := attr.Value.(*transaction.Conflicts).Hash
dummyTx := transaction.NewTrimmedTX(hash)
dummyTx.Version = transaction.DummyVersion
if err := kvcache.StoreAsTransaction(dummyTx, block.Index, writeBuf); err != nil {
blockdone <- fmt.Errorf("failed to store conflicting transaction %s for transaction %s: %w", hash.StringLE(), tx.Hash().StringLE(), err)
return
}
writeBuf.Reset()
}
}
}
if bc.config.RemoveUntraceableBlocks {
if block.Index > bc.config.MaxTraceableBlocks {
index := block.Index - bc.config.MaxTraceableBlocks // is at least 1
err := kvcache.DeleteBlock(bc.headerHashes[index], writeBuf)
if err != nil {
bc.log.Warn("error while removing old block",
zap.Uint32("index", index),
zap.Error(err))
}
writeBuf.Reset()
}
}
_, err := kvcache.Persist()
if err != nil {
blockdone <- err
}
close(blockdone)
}()
go func() {
var (
kvcache = dao.NewCached(cache)
writeBuf = io.NewBufBinWriter()
err error
appendBlock bool
)
for aer := range aerchan {
if aer.Container == block.Hash() && appendBlock {
err = kvcache.AppendAppExecResult(aer, writeBuf)
} else {
err = kvcache.PutAppExecResult(aer, writeBuf)
if aer.Container == block.Hash() {
appendBlock = true
}
}
if err != nil {
err = fmt.Errorf("failed to store exec result: %w", err)
break
}
if aer.Execution.VMState == vm.HaltState {
for j := range aer.Execution.Events {
bc.handleNotification(&aer.Execution.Events[j], kvcache, block, aer.Container)
}
}
writeBuf.Reset()
}
if err != nil {
aerdone <- err
return
}
_, err = kvcache.Persist()
if err != nil {
aerdone <- err
}
close(aerdone)
}()
aer, err := bc.runPersist(bc.contracts.GetPersistScript(), block, cache, trigger.OnPersist)
if err != nil {
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
// Release goroutines, don't care about errors, we already have one.
close(aerchan)
<-blockdone
<-aerdone
return fmt.Errorf("onPersist failed: %w", err)
}
appExecResults = append(appExecResults, aer)
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
aerchan <- aer
for _, tx := range block.Transactions {
systemInterop := bc.newInteropContext(trigger.Application, cache, block, tx)
v := systemInterop.SpawnVM()
v.LoadScriptWithFlags(tx.Script, callflag.All)
v.SetPriceGetter(systemInterop.GetPrice)
2021-01-19 08:23:39 +00:00
v.LoadToken = contract.LoadToken(systemInterop)
v.GasLimit = tx.SystemFee
err := v.Run()
var faultException string
if !v.HasFailed() {
_, err := systemInterop.DAO.Persist()
if err != nil {
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
// Release goroutines, don't care about errors, we already have one.
close(aerchan)
<-blockdone
<-aerdone
return fmt.Errorf("failed to persist invocation results: %w", err)
}
} else {
bc.log.Warn("contract invocation failed",
zap.String("tx", tx.Hash().StringLE()),
zap.Uint32("block", block.Index),
zap.Error(err))
faultException = err.Error()
}
aer := &state.AppExecResult{
Container: tx.Hash(),
Execution: state.Execution{
Trigger: trigger.Application,
VMState: v.State(),
GasConsumed: v.GasConsumed(),
Stack: v.Estack().ToArray(),
Events: systemInterop.Notifications,
FaultException: faultException,
},
}
appExecResults = append(appExecResults, aer)
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
aerchan <- aer
}
aer, err = bc.runPersist(bc.contracts.GetPostPersistScript(), block, cache, trigger.PostPersist)
if err != nil {
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
// Release goroutines, don't care about errors, we already have one.
close(aerchan)
<-blockdone
<-aerdone
return fmt.Errorf("postPersist failed: %w", err)
}
appExecResults = append(appExecResults, aer)
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
aerchan <- aer
close(aerchan)
d := cache.(*dao.Simple)
b := d.GetMPTBatch()
mpt, sr, err := bc.stateRoot.AddMPTBatch(block.Index, b, d.Store)
if err != nil {
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
// Release goroutines, don't care about errors, we already have one.
<-blockdone
<-aerdone
2020-12-26 10:27:59 +00:00
// Here MPT can be left in a half-applied state.
// However if this error occurs, this is a bug somewhere in code
// because changes applied are the ones from HALTed transactions.
return fmt.Errorf("error while trying to apply MPT changes: %w", err)
}
if bc.config.StateRootInHeader && bc.HeaderHeight() > sr.Index {
h, err := bc.GetHeader(bc.GetHeaderHash(int(sr.Index) + 1))
if err != nil {
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
err = fmt.Errorf("failed to get next header: %w", err)
} else if h.PrevStateRoot != sr.Root {
err = fmt.Errorf("local stateroot and next header's PrevStateRoot mismatch: %s vs %s", sr.Root.StringBE(), h.PrevStateRoot.StringBE())
}
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
if err != nil {
// Release goroutines, don't care about errors, we already have one.
<-blockdone
<-aerdone
return err
}
}
if bc.config.SaveStorageBatch {
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
bc.lastBatch = d.GetBatch()
}
// Every persist cycle we also compact our in-memory MPT. It's flushed
// already in AddMPTBatch, so collapsing it is safe.
persistedHeight := atomic.LoadUint32(&bc.persistedHeight)
if persistedHeight == block.Index-1 {
// 10 is good and roughly estimated to fit remaining trie into 1M of memory.
mpt.Collapse(10)
}
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
// Wait for _both_ goroutines to finish.
blockerr := <-blockdone
aererr := <-aerdone
if blockerr != nil {
return blockerr
}
if aererr != nil {
return aererr
}
bc.lock.Lock()
_, err = cache.Persist()
if err != nil {
bc.lock.Unlock()
return err
}
mpt.Store = bc.dao.Store
bc.stateRoot.UpdateCurrentLocal(mpt, sr)
bc.topBlock.Store(block)
atomic.StoreUint32(&bc.blockHeight, block.Index)
2020-11-27 10:55:48 +00:00
bc.memPool.RemoveStale(func(tx *transaction.Transaction) bool { return bc.IsTxStillRelevant(tx, txpool, false) }, bc)
for _, f := range bc.postBlock {
f(bc, txpool, block)
}
if err := bc.updateExtensibleWhitelist(block.Index); err != nil {
bc.lock.Unlock()
return err
}
bc.lock.Unlock()
updateBlockHeightMetric(block.Index)
// Genesis block is stored when Blockchain is not yet running, so there
// is no one to read this event. And it doesn't make much sense as event
// anyway.
if block.Index != 0 {
bc.events <- bcEvent{block, appExecResults}
}
return nil
}
func (bc *Blockchain) updateExtensibleWhitelist(height uint32) error {
updateCommittee := native.ShouldUpdateCommittee(height, bc)
stateVals, sh, err := bc.contracts.Designate.GetDesignatedByRole(bc.dao, noderoles.StateValidator, height)
if err != nil {
return err
}
if bc.extensible.Load() != nil && !updateCommittee && sh != height {
return nil
}
newList := []util.Uint160{bc.contracts.NEO.GetCommitteeAddress()}
nextVals := bc.contracts.NEO.GetNextBlockValidatorsInternal()
script, err := smartcontract.CreateDefaultMultiSigRedeemScript(nextVals)
if err != nil {
return err
}
newList = append(newList, hash.Hash160(script))
bc.updateExtensibleList(&newList, bc.contracts.NEO.GetNextBlockValidatorsInternal())
if len(stateVals) > 0 {
h, err := bc.contracts.Designate.GetLastDesignatedHash(bc.dao, noderoles.StateValidator)
if err != nil {
return err
}
newList = append(newList, h)
bc.updateExtensibleList(&newList, stateVals)
}
sort.Slice(newList, func(i, j int) bool {
return newList[i].Less(newList[j])
})
bc.extensible.Store(newList)
return nil
}
func (bc *Blockchain) updateExtensibleList(s *[]util.Uint160, pubs keys.PublicKeys) {
for _, pub := range pubs {
*s = append(*s, pub.GetScriptHash())
}
}
// IsExtensibleAllowed determines if script hash is allowed to send extensible payloads.
func (bc *Blockchain) IsExtensibleAllowed(u util.Uint160) bool {
us := bc.extensible.Load().([]util.Uint160)
n := sort.Search(len(us), func(i int) bool { return !us[i].Less(u) })
return n < len(us)
}
core: spread storeBlock actions to three goroutines Block processing consists of: * saving block/transactions to the DB * executing blocks/transactions * processing notifications/saving AERs * updating MPT * atomically updating Blockchain state Of these the first one is completely independent of others, it can be done in a separate routine easily. The third one technically depends on the second, it just doesn't have data until something is executed. At the same time it doesn't affect future executions in any way, so we can offload AER/notification processing to separate goroutine (while the main thread proceeds with other transactions). MPT update depends on all executions, so it can't be offloaded, but it can be done concurrently to AER processing. And only the last thing actually needs all previous ones to be finished, so it's a natural synchronization point. So we spawn two additional routines and let the main one execute transactions and update MPT as fast as it can. While technically all of these routines could share single DAO (they are working with different KV sets) benchmarking shows that using separate DAOs and then persisting them to lower one actually works about 7-8%% better. At the same time we can simplify DAOs used, Cached one is only relevant for AER processing because it caches NEP-17 tracking data, everything else can do just fine with Simple. The change was tested for performance with neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 50825 with VerifyBlocks set to false) on i7-8565U. neo-bench creates huge blocks with lots of transactions while RC4 dump mostly consists of empty blocks. Reference results (06c3dda5d1e713eb7fca59dd07621d22cb31dd53): Ryzen 9 5950X: RPS ≈ 20059.569 21186.328 20158.983 ≈ 20468 ± 3.05% TPS ≈ 19544.993 20585.450 19658.338 ≈ 19930 ± 2.86% CPU ≈ 18.682% 23.877% 22.852% ≈ 21.8 ± 12.62% Mem ≈ 618.981MB 559.246MB 541.539MB ≈ 573 ± 7.08% Core i7-8565U: RPS ≈ 5927.082 6526.739 6372.115 ≈ 6275 ± 4.96% TPS ≈ 5899.531 6477.187 6329.515 ≈ 6235 ± 4.81% CPU ≈ 56.346% 61.955% 58.125% ≈ 58.8 ± 4.87% Mem ≈ 212.191MB 224.974MB 205.479MB ≈ 214 ± 4.62% DB restore: real 0m12.683s 0m13.222s 0m13.382s ≈ 13.096 ± 2.80% user 0m18.501s 0m19.163s 0m19.489s ≈ 19.051 ± 2.64% sys 0m1.404s 0m1.396s 0m1.666s ≈ 1.489 ± 10.32% After the change: Ryzen 9 5950X: RPS ≈ 23056.899 22822.015 23006.543 ≈ 22962 ± 0.54% TPS ≈ 22594.785 22292.071 22800.857 ≈ 22562 ± 1.13% CPU ≈ 24.262% 23.185% 25.921% ≈ 24.5 ± 5.65% Mem ≈ 614.254MB 613.204MB 555.491MB ≈ 594 ± 5.66% Core i7-8565U: RPS ≈ 6378.702 6423.927 6363.788 ≈ 6389 ± 0.49% TPS ≈ 6327.072 6372.552 6311.179 ≈ 6337 ± 0.50% CPU ≈ 57.599% 58.622% 59.737% ≈ 58.7 ± 1.82% Mem ≈ 198.697MB 188.746MB 200.235MB ≈ 196 ± 3.18% DB restore: real 0m13.576s 0m13.334s 0m12.757s ≈ 13.222 ± 3.18% user 0m19.113s 0m19.490s 0m20.197s ≈ 19.600 ± 2.81% sys 0m2.211s 0m1.558s 0m1.559s ≈ 1.776 ± 21.21% On Ryzen 9 we've got 12% better RPS, 13% better TPS with 12% CPU and 3% RAM more used. Core i7-8565U changes don't seem to be statistically significant: 1.8% more RPS, 1.6% more TPS with about the same CPU and 8.5% less RAM used. It also is 1% worse in DB restore time. The result is somewhat expected, on a powerful machine with lots of spare cores we get 10%+ better results while on average resource-constrained laptop it doesn't change much (the machine is already saturated). Overall, this seems to be worthwhile.
2020-12-29 15:25:21 +00:00
func (bc *Blockchain) runPersist(script []byte, block *block.Block, cache dao.DAO, trig trigger.Type) (*state.AppExecResult, error) {
systemInterop := bc.newInteropContext(trig, cache, block, nil)
v := systemInterop.SpawnVM()
v.LoadScriptWithFlags(script, callflag.All)
v.SetPriceGetter(systemInterop.GetPrice)
if err := v.Run(); err != nil {
return nil, fmt.Errorf("VM has failed: %w", err)
} else if _, err := systemInterop.DAO.Persist(); err != nil {
return nil, fmt.Errorf("can't save changes: %w", err)
}
return &state.AppExecResult{
Container: block.Hash(), // application logs can be retrieved by block hash
Execution: state.Execution{
Trigger: trig,
VMState: v.State(),
GasConsumed: v.GasConsumed(),
Stack: v.Estack().ToArray(),
Events: systemInterop.Notifications,
},
}, nil
}
func (bc *Blockchain) handleNotification(note *state.NotificationEvent, d *dao.Cached, b *block.Block, h util.Uint256) {
2020-11-19 15:01:42 +00:00
if note.Name != "Transfer" {
return
}
arr, ok := note.Item.Value().([]stackitem.Item)
if !ok || len(arr) != 3 {
return
}
var from []byte
fromValue := arr[0].Value()
// we don't have `from` set when we are minting tokens
if fromValue != nil {
from, ok = fromValue.([]byte)
if !ok {
return
}
}
var to []byte
toValue := arr[1].Value()
// we don't have `to` set when we are burning tokens
if toValue != nil {
to, ok = toValue.([]byte)
if !ok {
return
}
}
amount, ok := arr[2].Value().(*big.Int)
if !ok {
bs, ok := arr[2].Value().([]byte)
if !ok {
return
}
if len(bs) > bigint.MaxBytesLen {
return // Not a proper number.
}
amount = bigint.FromBytes(bs)
}
bc.processNEP17Transfer(d, h, b, note.ScriptHash, from, to, amount)
}
2020-03-05 14:11:58 +00:00
func parseUint160(addr []byte) util.Uint160 {
2020-03-05 07:45:50 +00:00
if u, err := util.Uint160DecodeBytesBE(addr); err == nil {
2020-03-05 14:11:58 +00:00
return u
2020-03-05 07:45:50 +00:00
}
2020-03-05 14:11:58 +00:00
return util.Uint160{}
2020-03-05 07:45:50 +00:00
}
func (bc *Blockchain) processNEP17Transfer(cache *dao.Cached, h util.Uint256, b *block.Block, sc util.Uint160, from, to []byte, amount *big.Int) {
2020-03-05 07:45:50 +00:00
toAddr := parseUint160(to)
fromAddr := parseUint160(from)
var id int32
nativeContract := bc.contracts.ByHash(sc)
if nativeContract != nil {
id = nativeContract.Metadata().ID
} else {
assetContract, err := bc.contracts.Management.GetContract(cache, sc)
if err != nil {
return
}
id = assetContract.ID
}
transfer := &state.NEP17Transfer{
Asset: id,
2020-03-05 14:11:58 +00:00
From: fromAddr,
To: toAddr,
Block: b.Index,
Timestamp: b.Timestamp,
Tx: h,
2020-03-05 14:11:58 +00:00
}
if !fromAddr.Equals(util.Uint160{}) {
balances, err := cache.GetNEP17TransferInfo(fromAddr)
2020-03-05 07:45:50 +00:00
if err != nil {
return
}
balances.LastUpdated[id] = b.Index
transfer.Amount = *new(big.Int).Sub(&transfer.Amount, amount)
balances.NewBatch, err = cache.AppendNEP17Transfer(fromAddr,
balances.NextTransferBatch, balances.NewBatch, transfer)
if err != nil {
return
}
if balances.NewBatch {
balances.NextTransferBatch++
}
if err := cache.PutNEP17TransferInfo(fromAddr, balances); err != nil {
2020-03-05 14:11:58 +00:00
return
}
2020-03-05 07:45:50 +00:00
}
2020-03-05 14:11:58 +00:00
if !toAddr.Equals(util.Uint160{}) {
balances, err := cache.GetNEP17TransferInfo(toAddr)
2020-03-05 07:45:50 +00:00
if err != nil {
return
}
balances.LastUpdated[id] = b.Index
2020-03-05 14:11:58 +00:00
transfer.Amount = *amount
balances.NewBatch, err = cache.AppendNEP17Transfer(toAddr,
balances.NextTransferBatch, balances.NewBatch, transfer)
if err != nil {
return
}
if balances.NewBatch {
balances.NextTransferBatch++
}
if err := cache.PutNEP17TransferInfo(toAddr, balances); err != nil {
2020-03-05 14:11:58 +00:00
return
}
2020-03-05 07:45:50 +00:00
}
}
// ForEachNEP17Transfer executes f for each nep17 transfer in log.
func (bc *Blockchain) ForEachNEP17Transfer(acc util.Uint160, f func(*state.NEP17Transfer) (bool, error)) error {
balances, err := bc.dao.GetNEP17TransferInfo(acc)
2020-03-05 12:16:03 +00:00
if err != nil {
return nil
}
for i := int(balances.NextTransferBatch); i >= 0; i-- {
lg, err := bc.dao.GetNEP17TransferLog(acc, uint32(i))
if err != nil {
return nil
}
cont, err := lg.ForEach(f)
if err != nil {
return err
}
if !cont {
break
}
}
return nil
2020-03-05 12:16:03 +00:00
}
// GetNEP17Contracts returns the list of deployed NEP17 contracts.
func (bc *Blockchain) GetNEP17Contracts() []util.Uint160 {
return bc.contracts.Management.GetNEP17Contracts()
}
// GetNEP17LastUpdated returns a set of contract ids with the corresponding last updated
// block indexes.
func (bc *Blockchain) GetNEP17LastUpdated(acc util.Uint160) (map[int32]uint32, error) {
info, err := bc.dao.GetNEP17TransferInfo(acc)
if err != nil {
return nil, err
}
return info.LastUpdated, nil
}
// GetUtilityTokenBalance returns utility token (GAS) balance for the acc.
func (bc *Blockchain) GetUtilityTokenBalance(acc util.Uint160) *big.Int {
bs := bc.contracts.GAS.BalanceOf(bc.dao, acc)
if bs == nil {
return big.NewInt(0)
}
return bs
}
// GetGoverningTokenBalance returns governing token (NEO) balance and the height
// of the last balance change for the account.
func (bc *Blockchain) GetGoverningTokenBalance(acc util.Uint160) (*big.Int, uint32) {
return bc.contracts.NEO.BalanceOf(bc.dao, acc)
}
2020-11-27 10:55:48 +00:00
// GetNotaryBalance returns Notary deposit amount for the specified account.
func (bc *Blockchain) GetNotaryBalance(acc util.Uint160) *big.Int {
return bc.contracts.Notary.BalanceOf(bc.dao, acc)
}
// GetNotaryContractScriptHash returns Notary native contract hash.
func (bc *Blockchain) GetNotaryContractScriptHash() util.Uint160 {
if bc.P2PSigExtensionsEnabled() {
return bc.contracts.Notary.Hash
}
return util.Uint160{}
}
// GetNotaryDepositExpiration returns Notary deposit expiration height for the specified account.
func (bc *Blockchain) GetNotaryDepositExpiration(acc util.Uint160) uint32 {
return bc.contracts.Notary.ExpirationOf(bc.dao, acc)
}
// LastBatch returns last persisted storage batch.
func (bc *Blockchain) LastBatch() *storage.MemBatch {
return bc.lastBatch
}
2020-04-07 09:41:12 +00:00
// persist flushes current in-memory Store contents to the persistent storage.
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
func (bc *Blockchain) persist() (time.Duration, error) {
var (
start = time.Now()
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
duration time.Duration
persisted int
err error
)
persisted, err = bc.dao.Persist()
if err != nil {
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
return 0, err
}
if persisted > 0 {
bHeight, err := bc.persistent.GetCurrentBlockHeight()
if err != nil {
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
return 0, err
}
oldHeight := atomic.SwapUint32(&bc.persistedHeight, bHeight)
diff := bHeight - oldHeight
storedHeaderHeight, _, err := bc.persistent.GetCurrentHeaderHeight()
if err != nil {
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
return 0, err
}
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
duration = time.Since(start)
bc.log.Info("persisted to disk",
zap.Uint32("blocks", diff),
zap.Int("keys", persisted),
2019-12-30 07:43:05 +00:00
zap.Uint32("headerHeight", storedHeaderHeight),
zap.Uint32("blockHeight", bHeight),
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
zap.Duration("took", duration))
// update monitoring metrics.
updatePersistedHeightMetric(bHeight)
}
core: don't spawn goroutine for persist function It doesn't make any sense, in some situations it leads to a number of goroutines created that will Persist one after another (as we can't Persist concurrently). We can manage it better in a single thread. This doesn't change performance in any way, but somewhat reduces resource consumption. It was tested neo-bench (single node, 10 workers, LevelDB) on two machines and block dump processing (RC4 testnet up to 62800 with VerifyBlocks set to false) on i7-8565U. Reference (b9be892bf9f658652e2d1f074f366914dc62e830): Ryzen 9 5950X: RPS 27747.349 27407.726 27520.210 ≈ 27558 ± 0.63% TPS 26992.010 26993.468 27010.966 ≈ 26999 ± 0.04% CPU % 28.928 28.096 29.105 ≈ 28.7 ± 1.88% Mem MB 760.385 726.320 756.118 ≈ 748 ± 2.48% Core i7-8565U: RPS 7783.229 7628.409 7542.340 ≈ 7651 ± 1.60% TPS 7708.436 7607.397 7489.459 ≈ 7602 ± 1.44% CPU % 74.899 71.020 72.697 ≈ 72.9 ± 2.67% Mem MB 438.047 436.967 416.350 ≈ 430 ± 2.84% DB restore: real 0m20.838s 0m21.895s 0m21.794s ≈ 21.51 ± 2.71% user 0m39.091s 0m40.565s 0m41.493s ≈ 40.38 ± 3.00% sys 0m3.184s 0m2.923s 0m3.062s ≈ 3.06 ± 4.27% Patched: Ryzen 9 5950X: RPS 27636.957 27246.911 27462.036 ≈ 27449 ± 0.71% ↓ 0.40% TPS 27003.672 26993.468 27011.696 ≈ 27003 ± 0.03% ↑ 0.01% CPU % 28.562 28.475 28.012 ≈ 28.3 ± 1.04% ↓ 1.39% Mem MB 627.007 648.110 794.895 ≈ 690 ± 13.25% ↓ 7.75% Core i7-8565U: RPS 7497.210 7527.797 7897.532 ≈ 7641 ± 2.92% ↓ 0.13% TPS 7461.128 7482.678 7841.723 ≈ 7595 ± 2.81% ↓ 0.09% CPU % 71.559 73.423 69.005 ≈ 71.3 ± 3.11% ↓ 2.19% Mem MB 393.090 395.899 482.264 ≈ 424 ± 11.96% ↓ 1.40% DB restore: real 0m20.773s 0m21.583s 0m20.522s ≈ 20.96 ± 2.65% ↓ 2.56% user 0m39.322s 0m42.268s 0m38.626s ≈ 40.07 ± 4.82% ↓ 0.77% sys 0m3.006s 0m3.597s 0m3.042s ≈ 3.22 ± 10.31% ↑ 5.23%
2021-07-30 20:47:48 +00:00
return duration, nil
}
// GetTransaction returns a TX and its height by the given hash. The height is MaxUint32 if tx is in the mempool.
func (bc *Blockchain) GetTransaction(hash util.Uint256) (*transaction.Transaction, uint32, error) {
if tx, ok := bc.memPool.TryGetValue(hash); ok {
return tx, math.MaxUint32, nil // the height is not actually defined for memPool transaction.
}
return bc.dao.GetTransaction(hash)
}
// GetAppExecResults returns application execution results with the specified trigger by the given
// tx hash or block hash.
func (bc *Blockchain) GetAppExecResults(hash util.Uint256, trig trigger.Type) ([]state.AppExecResult, error) {
return bc.dao.GetAppExecResults(hash, trig)
}
// GetStorageItem returns an item from storage.
func (bc *Blockchain) GetStorageItem(id int32, key []byte) state.StorageItem {
return bc.dao.GetStorageItem(id, key)
}
// GetStorageItems returns all storage items for a given contract id.
func (bc *Blockchain) GetStorageItems(id int32) (map[string]state.StorageItem, error) {
return bc.dao.GetStorageItems(id)
}
// GetBlock returns a Block by the given hash.
func (bc *Blockchain) GetBlock(hash util.Uint256) (*block.Block, error) {
topBlock := bc.topBlock.Load()
if topBlock != nil {
tb := topBlock.(*block.Block)
if tb.Hash().Equals(hash) {
return tb, nil
}
}
block, err := bc.dao.GetBlock(hash)
if err != nil {
return nil, err
}
if !block.MerkleRoot.Equals(util.Uint256{}) && len(block.Transactions) == 0 {
return nil, errors.New("only header is found")
}
for _, tx := range block.Transactions {
core: get transactions from dao when mempool should not be used All of these places deal strictly with the chain and shouldn't ever be bothered with mempool. It also fixes a deadlock on reverification of non-standard tx: 1 @ 0x42f62f 0x43fbe9 0x43fbbf 0x43f95d 0x967059 0x966f66 0x972c7c 0x974e13 0x97a5d9 0x97bdf0 0x976147 0x966cc0 0x970f70 0x96c8cb 0x9ba858 0x45ca51 0x43f95c sync.runtime_SemacquireMutex+0x3c /usr/local/go/src/runtime/sema.go:71 0x967058 sync.(*RWMutex).RLock+0x128 /usr/local/go/src/sync/rwmutex.go:50 0x966f65 github.com/CityOfZion/neo-go/pkg/core/mempool.(*Pool).TryGetValue+0x35 /go/src/github.com/CityOfZion/neo-go/pkg/core/mempool/mem_pool.go:229 0x972c7b github.com/CityOfZion/neo-go/pkg/core.(*Blockchain).GetTransaction+0x4b /go/src/github.com/CityOfZion/neo-go/pkg/core/blockchain.go:782 0x974e12 github.com/CityOfZion/neo-go/pkg/core.(*Blockchain).References+0x132 /go/src/github.com/CityOfZion/neo-go/pkg/core/blockchain.go:944 0x97a5d8 github.com/CityOfZion/neo-go/pkg/core.(*Blockchain).GetScriptHashesForVerifying+0x58 /go/src/github.com/CityOfZion/neo-go/pkg/core/blockchain.go:1410 0x97bdef github.com/CityOfZion/neo-go/pkg/core.(*Blockchain).verifyTxWitnesses+0x4f /go/src/github.com/CityOfZion/neo-go/pkg/core/blockchain.go:1545 0x976146 github.com/CityOfZion/neo-go/pkg/core.(*Blockchain).isTxStillRelevant+0x216 /go/src/github.com/CityOfZion/neo-go/pkg/core/blockchain.go:1067 0x966cbf github.com/CityOfZion/neo-go/pkg/core/mempool.(*Pool).RemoveStale+0xff /go/src/github.com/CityOfZion/neo-go/pkg/core/mempool/mem_pool.go:208 0x970f6f github.com/CityOfZion/neo-go/pkg/core.(*Blockchain).storeBlock+0x2ecf /go/src/github.com/CityOfZion/neo-go/pkg/core/blockchain.go:614 0x96c8ca github.com/CityOfZion/neo-go/pkg/core.(*Blockchain).AddBlock+0xea /go/src/github.com/CityOfZion/neo-go/pkg/core/blockchain.go:308 0x9ba857 github.com/CityOfZion/neo-go/pkg/network.(*blockQueue).run+0x157 /go/src/github.com/CityOfZion/neo-go/pkg/network/blockqueue.go:48
2020-02-10 15:53:22 +00:00
stx, _, err := bc.dao.GetTransaction(tx.Hash())
if err != nil {
return nil, err
}
*tx = *stx
}
return block, nil
}
// GetHeader returns data block header identified with the given hash value.
func (bc *Blockchain) GetHeader(hash util.Uint256) (*block.Header, error) {
topBlock := bc.topBlock.Load()
if topBlock != nil {
tb := topBlock.(*block.Block)
if tb.Hash().Equals(hash) {
2021-03-01 13:44:47 +00:00
return &tb.Header, nil
}
}
block, err := bc.dao.GetBlock(hash)
if err != nil {
return nil, err
}
2021-03-01 13:44:47 +00:00
return &block.Header, nil
}
2019-10-22 14:56:03 +00:00
// HasTransaction returns true if the blockchain contains he given
// transaction hash.
func (bc *Blockchain) HasTransaction(hash util.Uint256) bool {
if bc.memPool.ContainsKey(hash) {
return true
}
return bc.dao.HasTransaction(hash) == dao.ErrAlreadyExists
}
2019-10-22 14:56:03 +00:00
// HasBlock returns true if the blockchain contains the given
// block hash.
func (bc *Blockchain) HasBlock(hash util.Uint256) bool {
Implemented rpc server method GetRawTransaction (#135) * Added utility function GetVarSize * 1) Added Size method: this implied that Fixed8 implements now the serializable interface. 2) Added few arithmetic operation (Add, Sub, div): this will be used to calculated networkfeeand feePerByte. Changed return value of the Value() method to int instead of int64. Modified fixed8_test accordingly. * Implemented Size or MarshalJSON method. - Structs accepting the Size method implement the serializable interface. - Structs accepting the MarshalJSON method implements the customized json marshaller interface. * Added fee calculation * Implemented rcp server method GetRawTransaction * Updated Tests * Fixed: 1) NewFixed8 will accept as input int64 2) race condition affecting configDeafault, blockchainDefault * Simplified Size calculation * 1) Removed global variable blockchainDefault, configDefault 2) Extended Blockchainer interface to include the methods: References, FeePerByte, SystemFee, NetworkFee 3) Deleted fee_test.go, fee.go. Moved corresponding methods to blockchain_test.go and blockchain.go respectively 4) Amended tx_raw_output.go * Simplified GetVarSize Method * Replaced ValueAtAndType with ValueWithType * Cosmetic changes + Added test case getrawtransaction_7 * Clean up Print statement * Filled up keys * Aligned verbose logic with the C#-neo implementation * Implemented @Kim requests Refactor server_test.go * Small fixes * Fixed verbose logic Added more tests Cosmetic changes * Replaced assert.NoError with require.NoError * Fixed tests by adding context.Background() as argument * Fixed tests
2019-02-20 17:39:32 +00:00
if header, err := bc.GetHeader(hash); err == nil {
return header.Index <= bc.BlockHeight()
}
return false
}
// CurrentBlockHash returns the highest processed block hash.
func (bc *Blockchain) CurrentBlockHash() util.Uint256 {
topBlock := bc.topBlock.Load()
if topBlock != nil {
tb := topBlock.(*block.Block)
return tb.Hash()
}
return bc.GetHeaderHash(int(bc.BlockHeight()))
}
// CurrentHeaderHash returns the hash of the latest known header.
func (bc *Blockchain) CurrentHeaderHash() util.Uint256 {
bc.headerHashesLock.RLock()
hash := bc.headerHashes[len(bc.headerHashes)-1]
bc.headerHashesLock.RUnlock()
return hash
}
// GetHeaderHash returns hash of the header/block with specified index, if
// Blockchain doesn't have a hash for this height, zero Uint256 value is returned.
func (bc *Blockchain) GetHeaderHash(i int) util.Uint256 {
bc.headerHashesLock.RLock()
defer bc.headerHashesLock.RUnlock()
hashesLen := len(bc.headerHashes)
if hashesLen <= i {
return util.Uint256{}
}
return bc.headerHashes[i]
}
// BlockHeight returns the height/index of the highest block.
func (bc *Blockchain) BlockHeight() uint32 {
return atomic.LoadUint32(&bc.blockHeight)
}
// HeaderHeight returns the index/height of the highest header.
func (bc *Blockchain) HeaderHeight() uint32 {
bc.headerHashesLock.RLock()
n := len(bc.headerHashes)
bc.headerHashesLock.RUnlock()
return uint32(n - 1)
}
// GetContractState returns contract by its script hash.
func (bc *Blockchain) GetContractState(hash util.Uint160) *state.Contract {
contract, err := bc.contracts.Management.GetContract(bc.dao, hash)
if contract == nil && err != storage.ErrKeyNotFound {
2019-12-30 07:43:05 +00:00
bc.log.Warn("failed to get contract state", zap.Error(err))
}
return contract
}
// GetContractScriptHash returns contract script hash by its ID.
func (bc *Blockchain) GetContractScriptHash(id int32) (util.Uint160, error) {
return bc.dao.GetContractScriptHash(id)
}
// GetNativeContractScriptHash returns native contract script hash by its name.
func (bc *Blockchain) GetNativeContractScriptHash(name string) (util.Uint160, error) {
c := bc.contracts.ByName(name)
if c != nil {
return c.Metadata().Hash, nil
}
return util.Uint160{}, errors.New("Unknown native contract")
}
// GetNatives returns list of native contracts.
func (bc *Blockchain) GetNatives() []state.NativeContract {
res := make([]state.NativeContract, 0, len(bc.contracts.Contracts))
for _, c := range bc.contracts.Contracts {
res = append(res, c.Metadata().NativeContract)
}
return res
}
2019-10-22 14:56:03 +00:00
// GetConfig returns the config stored in the blockchain.
Implemented rpc server method GetRawTransaction (#135) * Added utility function GetVarSize * 1) Added Size method: this implied that Fixed8 implements now the serializable interface. 2) Added few arithmetic operation (Add, Sub, div): this will be used to calculated networkfeeand feePerByte. Changed return value of the Value() method to int instead of int64. Modified fixed8_test accordingly. * Implemented Size or MarshalJSON method. - Structs accepting the Size method implement the serializable interface. - Structs accepting the MarshalJSON method implements the customized json marshaller interface. * Added fee calculation * Implemented rcp server method GetRawTransaction * Updated Tests * Fixed: 1) NewFixed8 will accept as input int64 2) race condition affecting configDeafault, blockchainDefault * Simplified Size calculation * 1) Removed global variable blockchainDefault, configDefault 2) Extended Blockchainer interface to include the methods: References, FeePerByte, SystemFee, NetworkFee 3) Deleted fee_test.go, fee.go. Moved corresponding methods to blockchain_test.go and blockchain.go respectively 4) Amended tx_raw_output.go * Simplified GetVarSize Method * Replaced ValueAtAndType with ValueWithType * Cosmetic changes + Added test case getrawtransaction_7 * Clean up Print statement * Filled up keys * Aligned verbose logic with the C#-neo implementation * Implemented @Kim requests Refactor server_test.go * Small fixes * Fixed verbose logic Added more tests Cosmetic changes * Replaced assert.NoError with require.NoError * Fixed tests by adding context.Background() as argument * Fixed tests
2019-02-20 17:39:32 +00:00
func (bc *Blockchain) GetConfig() config.ProtocolConfiguration {
return bc.config
}
// SubscribeForBlocks adds given channel to new block event broadcasting, so when
// there is a new block added to the chain you'll receive it via this channel.
// Make sure it's read from regularly as not reading these events might affect
// other Blockchain functions.
func (bc *Blockchain) SubscribeForBlocks(ch chan<- *block.Block) {
bc.subCh <- ch
}
// SubscribeForTransactions adds given channel to new transaction event
// broadcasting, so when there is a new transaction added to the chain (in a
// block) you'll receive it via this channel. Make sure it's read from regularly
// as not reading these events might affect other Blockchain functions.
func (bc *Blockchain) SubscribeForTransactions(ch chan<- *transaction.Transaction) {
bc.subCh <- ch
}
// SubscribeForNotifications adds given channel to new notifications event
// broadcasting, so when an in-block transaction execution generates a
// notification you'll receive it via this channel. Only notifications from
// successful transactions are broadcasted, if you're interested in failed
// transactions use SubscribeForExecutions instead. Make sure this channel is
// read from regularly as not reading these events might affect other Blockchain
// functions.
func (bc *Blockchain) SubscribeForNotifications(ch chan<- *state.NotificationEvent) {
bc.subCh <- ch
}
// SubscribeForExecutions adds given channel to new transaction execution event
// broadcasting, so when an in-block transaction execution happens you'll receive
// the result of it via this channel. Make sure it's read from regularly as not
// reading these events might affect other Blockchain functions.
func (bc *Blockchain) SubscribeForExecutions(ch chan<- *state.AppExecResult) {
bc.subCh <- ch
}
// UnsubscribeFromBlocks unsubscribes given channel from new block notifications,
// you can close it afterwards. Passing non-subscribed channel is a no-op.
func (bc *Blockchain) UnsubscribeFromBlocks(ch chan<- *block.Block) {
bc.unsubCh <- ch
}
// UnsubscribeFromTransactions unsubscribes given channel from new transaction
// notifications, you can close it afterwards. Passing non-subscribed channel is
// a no-op.
func (bc *Blockchain) UnsubscribeFromTransactions(ch chan<- *transaction.Transaction) {
bc.unsubCh <- ch
}
// UnsubscribeFromNotifications unsubscribes given channel from new
// execution-generated notifications, you can close it afterwards. Passing
// non-subscribed channel is a no-op.
func (bc *Blockchain) UnsubscribeFromNotifications(ch chan<- *state.NotificationEvent) {
bc.unsubCh <- ch
}
// UnsubscribeFromExecutions unsubscribes given channel from new execution
// notifications, you can close it afterwards. Passing non-subscribed channel is
// a no-op.
func (bc *Blockchain) UnsubscribeFromExecutions(ch chan<- *state.AppExecResult) {
bc.unsubCh <- ch
}
// CalculateClaimable calculates the amount of GAS generated by owning specified
2020-08-26 09:07:30 +00:00
// amount of NEO between specified blocks.
func (bc *Blockchain) CalculateClaimable(acc util.Uint160, endHeight uint32) (*big.Int, error) {
return bc.contracts.NEO.CalculateBonus(bc.dao, acc, endHeight)
}
// FeePerByte returns transaction network fee per byte.
func (bc *Blockchain) FeePerByte() int64 {
return bc.contracts.Policy.GetFeePerByteInternal(bc.dao)
Implemented rpc server method GetRawTransaction (#135) * Added utility function GetVarSize * 1) Added Size method: this implied that Fixed8 implements now the serializable interface. 2) Added few arithmetic operation (Add, Sub, div): this will be used to calculated networkfeeand feePerByte. Changed return value of the Value() method to int instead of int64. Modified fixed8_test accordingly. * Implemented Size or MarshalJSON method. - Structs accepting the Size method implement the serializable interface. - Structs accepting the MarshalJSON method implements the customized json marshaller interface. * Added fee calculation * Implemented rcp server method GetRawTransaction * Updated Tests * Fixed: 1) NewFixed8 will accept as input int64 2) race condition affecting configDeafault, blockchainDefault * Simplified Size calculation * 1) Removed global variable blockchainDefault, configDefault 2) Extended Blockchainer interface to include the methods: References, FeePerByte, SystemFee, NetworkFee 3) Deleted fee_test.go, fee.go. Moved corresponding methods to blockchain_test.go and blockchain.go respectively 4) Amended tx_raw_output.go * Simplified GetVarSize Method * Replaced ValueAtAndType with ValueWithType * Cosmetic changes + Added test case getrawtransaction_7 * Clean up Print statement * Filled up keys * Aligned verbose logic with the C#-neo implementation * Implemented @Kim requests Refactor server_test.go * Small fixes * Fixed verbose logic Added more tests Cosmetic changes * Replaced assert.NoError with require.NoError * Fixed tests by adding context.Background() as argument * Fixed tests
2019-02-20 17:39:32 +00:00
}
// GetMemPool returns the memory pool of the blockchain.
func (bc *Blockchain) GetMemPool() *mempool.Pool {
return bc.memPool
}
// ApplyPolicyToTxSet applies configured policies to given transaction set. It
// expects slice to be ordered by fee and returns a subslice of it.
func (bc *Blockchain) ApplyPolicyToTxSet(txes []*transaction.Transaction) []*transaction.Transaction {
maxTx := bc.config.MaxTransactionsPerBlock
if maxTx != 0 && len(txes) > int(maxTx) {
txes = txes[:maxTx]
}
maxBlockSize := bc.config.MaxBlockSize
maxBlockSysFee := bc.config.MaxBlockSystemFee
2021-03-15 10:00:04 +00:00
defaultWitness := bc.defaultBlockWitness.Load()
if defaultWitness == nil {
m := smartcontract.GetDefaultHonestNodeCount(bc.config.ValidatorsCount)
verification, _ := smartcontract.CreateDefaultMultiSigRedeemScript(bc.contracts.NEO.GetNextBlockValidatorsInternal())
defaultWitness = transaction.Witness{
InvocationScript: make([]byte, 66*m),
VerificationScript: verification,
}
bc.defaultBlockWitness.Store(defaultWitness)
}
var (
2021-03-15 10:51:07 +00:00
b = &block.Block{Header: block.Header{Script: defaultWitness.(transaction.Witness)}}
blockSize = uint32(b.GetExpectedBlockSizeWithoutTransactions(len(txes)))
blockSysFee int64
2021-03-15 10:00:04 +00:00
)
for i, tx := range txes {
blockSize += uint32(tx.Size())
2021-03-15 10:51:07 +00:00
blockSysFee += tx.SystemFee
if blockSize > maxBlockSize || blockSysFee > maxBlockSysFee {
2021-03-15 10:00:04 +00:00
txes = txes[:i]
break
}
}
return txes
}
// Various errors that could be returns upon header verification.
var (
ErrHdrHashMismatch = errors.New("previous header hash doesn't match")
ErrHdrIndexMismatch = errors.New("previous header index doesn't match")
ErrHdrInvalidTimestamp = errors.New("block is not newer than the previous one")
ErrHdrStateRootSetting = errors.New("state root setting mismatch")
ErrHdrInvalidStateRoot = errors.New("state root for previous block is invalid")
)
func (bc *Blockchain) verifyHeader(currHeader, prevHeader *block.Header) error {
if bc.config.StateRootInHeader {
if bc.stateRoot.CurrentLocalHeight() == prevHeader.Index {
if sr := bc.stateRoot.CurrentLocalStateRoot(); currHeader.PrevStateRoot != sr {
return fmt.Errorf("%w: %s != %s",
ErrHdrInvalidStateRoot, currHeader.PrevStateRoot.StringLE(), sr.StringLE())
}
}
}
if prevHeader.Hash() != currHeader.PrevHash {
return ErrHdrHashMismatch
}
if prevHeader.Index+1 != currHeader.Index {
return ErrHdrIndexMismatch
}
if prevHeader.Timestamp >= currHeader.Timestamp {
return ErrHdrInvalidTimestamp
}
return bc.verifyHeaderWitnesses(currHeader, prevHeader)
}
// Various errors that could be returned upon verification.
var (
ErrTxExpired = errors.New("transaction has expired")
ErrInsufficientFunds = errors.New("insufficient funds")
ErrTxSmallNetworkFee = errors.New("too small network fee")
ErrTxTooBig = errors.New("too big transaction")
ErrMemPoolConflict = errors.New("invalid transaction due to conflicts with the memory pool")
ErrInvalidScript = errors.New("invalid script")
ErrInvalidAttribute = errors.New("invalid attribute")
)
// verifyAndPoolTx verifies whether a transaction is bonafide or not and tries
// to add it to the mempool given.
2020-11-27 10:55:48 +00:00
func (bc *Blockchain) verifyAndPoolTx(t *transaction.Transaction, pool *mempool.Pool, feer mempool.Feer, data ...interface{}) error {
// This code can technically be moved out of here, because it doesn't
// really require a chain lock.
err := vm.IsScriptCorrect(t.Script, nil)
if err != nil {
return fmt.Errorf("%w: %v", ErrInvalidScript, err)
}
height := bc.BlockHeight()
2020-11-27 10:55:48 +00:00
isPartialTx := data != nil
if t.ValidUntilBlock <= height || !isPartialTx && t.ValidUntilBlock > height+bc.config.MaxValidUntilBlockIncrement {
return fmt.Errorf("%w: ValidUntilBlock = %d, current height = %d", ErrTxExpired, t.ValidUntilBlock, height)
}
// Policying.
if err := bc.contracts.Policy.CheckPolicy(bc.dao, t); err != nil {
// Only one %w can be used.
return fmt.Errorf("%w: %v", ErrPolicy, err)
}
size := t.Size()
if size > transaction.MaxTransactionSize {
return fmt.Errorf("%w: (%d > MaxTransactionSize %d)", ErrTxTooBig, size, transaction.MaxTransactionSize)
}
needNetworkFee := int64(size) * bc.FeePerByte()
if bc.P2PSigExtensionsEnabled() {
attrs := t.GetAttributes(transaction.NotaryAssistedT)
if len(attrs) != 0 {
na := attrs[0].Value.(*transaction.NotaryAssisted)
needNetworkFee += (int64(na.NKeys) + 1) * transaction.NotaryServiceFeePerKey
}
}
netFee := t.NetworkFee - needNetworkFee
if netFee < 0 {
return fmt.Errorf("%w: net fee is %v, need %v", ErrTxSmallNetworkFee, t.NetworkFee, needNetworkFee)
}
// check that current tx wasn't included in the conflicts attributes of some other transaction which is already in the chain
if err := bc.dao.HasTransaction(t.Hash()); err != nil {
switch {
case errors.Is(err, dao.ErrAlreadyExists):
return fmt.Errorf("blockchain: %w", ErrAlreadyExists)
case errors.Is(err, dao.ErrHasConflicts):
return fmt.Errorf("blockchain: %w", ErrHasConflicts)
default:
return err
}
}
err = bc.verifyTxWitnesses(t, nil, isPartialTx)
if err != nil {
return err
}
2020-11-27 10:55:48 +00:00
if err := bc.verifyTxAttributes(t, isPartialTx); err != nil {
return err
}
2020-11-27 10:55:48 +00:00
err = pool.Add(t, feer, data...)
if err != nil {
switch {
case errors.Is(err, mempool.ErrConflict):
return ErrMemPoolConflict
case errors.Is(err, mempool.ErrDup):
return fmt.Errorf("mempool: %w", ErrAlreadyExists)
case errors.Is(err, mempool.ErrInsufficientFunds):
return ErrInsufficientFunds
case errors.Is(err, mempool.ErrOOM):
return ErrOOM
case errors.Is(err, mempool.ErrConflictsAttribute):
return fmt.Errorf("mempool: %w: %s", ErrHasConflicts, err)
default:
return err
}
}
return nil
}
2020-11-27 10:55:48 +00:00
func (bc *Blockchain) verifyTxAttributes(tx *transaction.Transaction, isPartialTx bool) error {
for i := range tx.Attributes {
switch attrType := tx.Attributes[i].Type; attrType {
case transaction.HighPriority:
h := bc.contracts.NEO.GetCommitteeAddress()
if !tx.HasSigner(h) {
return fmt.Errorf("%w: high priority tx is not signed by committee", ErrInvalidAttribute)
}
2020-09-24 13:33:40 +00:00
case transaction.OracleResponseT:
h, err := bc.contracts.Oracle.GetScriptHash(bc.dao)
if err != nil || h.Equals(util.Uint160{}) {
2020-09-24 13:33:40 +00:00
return fmt.Errorf("%w: %v", ErrInvalidAttribute, err)
}
hasOracle := false
for i := range tx.Signers {
if tx.Signers[i].Scopes != transaction.None {
2020-09-24 13:33:40 +00:00
return fmt.Errorf("%w: oracle tx has invalid signer scope", ErrInvalidAttribute)
}
if tx.Signers[i].Account.Equals(h) {
hasOracle = true
}
}
if !hasOracle {
return fmt.Errorf("%w: oracle tx is not signed by oracle nodes", ErrInvalidAttribute)
}
if !bytes.Equal(tx.Script, bc.contracts.Oracle.GetOracleResponseScript()) {
2020-09-24 13:33:40 +00:00
return fmt.Errorf("%w: oracle tx has invalid script", ErrInvalidAttribute)
}
resp := tx.Attributes[i].Value.(*transaction.OracleResponse)
req, err := bc.contracts.Oracle.GetRequestInternal(bc.dao, resp.ID)
if err != nil {
return fmt.Errorf("%w: oracle tx points to invalid request: %v", ErrInvalidAttribute, err)
}
if uint64(tx.NetworkFee+tx.SystemFee) < req.GasForResponse {
return fmt.Errorf("%w: oracle tx has insufficient gas", ErrInvalidAttribute)
}
case transaction.NotValidBeforeT:
if !bc.config.P2PSigExtensions {
return fmt.Errorf("%w: NotValidBefore attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute)
}
2020-11-27 10:55:48 +00:00
nvb := tx.Attributes[i].Value.(*transaction.NotValidBefore).Height
if isPartialTx {
maxNVBDelta := bc.contracts.Notary.GetMaxNotValidBeforeDelta(bc.dao)
if bc.BlockHeight()+maxNVBDelta < nvb {
return fmt.Errorf("%w: partially-filled transaction should become valid not less then %d blocks after current chain's height %d", ErrInvalidAttribute, maxNVBDelta, bc.BlockHeight())
}
if nvb+maxNVBDelta < tx.ValidUntilBlock {
return fmt.Errorf("%w: partially-filled transaction should be valid during less than %d blocks", ErrInvalidAttribute, maxNVBDelta)
}
} else {
if height := bc.BlockHeight(); height < nvb {
return fmt.Errorf("%w: transaction is not yet valid: NotValidBefore = %d, current height = %d", ErrInvalidAttribute, nvb, height)
}
}
case transaction.ConflictsT:
if !bc.config.P2PSigExtensions {
return fmt.Errorf("%w: Conflicts attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute)
}
conflicts := tx.Attributes[i].Value.(*transaction.Conflicts)
if err := bc.dao.HasTransaction(conflicts.Hash); errors.Is(err, dao.ErrAlreadyExists) {
return fmt.Errorf("%w: conflicting transaction %s is already on chain", ErrInvalidAttribute, conflicts.Hash.StringLE())
}
case transaction.NotaryAssistedT:
if !bc.config.P2PSigExtensions {
return fmt.Errorf("%w: NotaryAssisted attribute was found, but P2PSigExtensions are disabled", ErrInvalidAttribute)
}
2020-11-19 10:00:46 +00:00
if !tx.HasSigner(bc.contracts.Notary.Hash) {
return fmt.Errorf("%w: NotaryAssisted attribute was found, but transaction is not signed by the Notary native contract", ErrInvalidAttribute)
}
default:
if !bc.config.ReservedAttributes && attrType >= transaction.ReservedLowerBound && attrType <= transaction.ReservedUpperBound {
return fmt.Errorf("%w: attribute of reserved type was found, but ReservedAttributes are disabled", ErrInvalidAttribute)
}
}
}
return nil
}
2020-11-27 10:55:48 +00:00
// IsTxStillRelevant is a callback for mempool transaction filtering after the
// new block addition. It returns false for transactions added by the new block
// (passed via txpool) and does witness reverification for non-standard
// contracts. It operates under the assumption that full transaction verification
// was already done so we don't need to check basic things like size, input/output
// correctness, presence in blocks before the new one, etc.
2020-11-27 10:55:48 +00:00
func (bc *Blockchain) IsTxStillRelevant(t *transaction.Transaction, txpool *mempool.Pool, isPartialTx bool) bool {
var recheckWitness bool
var curheight = bc.BlockHeight()
if t.ValidUntilBlock <= curheight {
return false
}
if txpool == nil {
if bc.dao.HasTransaction(t.Hash()) != nil {
return false
}
} else if txpool.HasConflicts(t, bc) {
return false
}
2020-11-27 10:55:48 +00:00
if err := bc.verifyTxAttributes(t, isPartialTx); err != nil {
return false
}
for i := range t.Scripts {
if !vm.IsStandardContract(t.Scripts[i].VerificationScript) {
recheckWitness = true
break
}
}
if recheckWitness {
2020-11-27 10:55:48 +00:00
return bc.verifyTxWitnesses(t, nil, isPartialTx) == nil
}
return true
}
// VerifyTx verifies whether transaction is bonafide or not relative to the
// current blockchain state. Note that this verification is completely isolated
// from the main node's mempool.
func (bc *Blockchain) VerifyTx(t *transaction.Transaction) error {
2021-01-15 12:40:15 +00:00
var mp = mempool.New(1, 0, false)
bc.lock.RLock()
defer bc.lock.RUnlock()
2020-11-27 10:55:48 +00:00
return bc.verifyAndPoolTx(t, mp, bc)
}
// PoolTx verifies and tries to add given transaction into the mempool. If not
// given, the default mempool is used. Passing multiple pools is not supported.
func (bc *Blockchain) PoolTx(t *transaction.Transaction, pools ...*mempool.Pool) error {
var pool = bc.memPool
bc.lock.RLock()
defer bc.lock.RUnlock()
// Programmer error.
if len(pools) > 1 {
panic("too many pools given")
}
if len(pools) == 1 {
pool = pools[0]
}
2020-11-27 10:55:48 +00:00
return bc.verifyAndPoolTx(t, pool, bc)
}
// PoolTxWithData verifies and tries to add given transaction with additional data into the mempool.
func (bc *Blockchain) PoolTxWithData(t *transaction.Transaction, data interface{}, mp *mempool.Pool, feer mempool.Feer, verificationFunction func(bc blockchainer.Blockchainer, tx *transaction.Transaction, data interface{}) error) error {
bc.lock.RLock()
defer bc.lock.RUnlock()
if verificationFunction != nil {
err := verificationFunction(bc, t, data)
if err != nil {
return err
}
}
2021-01-15 12:40:15 +00:00
return bc.verifyAndPoolTx(t, mp, feer, data)
}
//GetStandByValidators returns validators from the configuration.
func (bc *Blockchain) GetStandByValidators() keys.PublicKeys {
return bc.sbCommittee[:bc.config.ValidatorsCount].Copy()
}
// GetStandByCommittee returns standby committee from the configuration.
func (bc *Blockchain) GetStandByCommittee() keys.PublicKeys {
return bc.sbCommittee.Copy()
}
// GetCommittee returns the sorted list of public keys of nodes in committee.
func (bc *Blockchain) GetCommittee() (keys.PublicKeys, error) {
2020-08-28 07:24:54 +00:00
pubs := bc.contracts.NEO.GetCommitteeMembers()
sort.Sort(pubs)
return pubs, nil
}
// GetValidators returns current validators.
func (bc *Blockchain) GetValidators() ([]*keys.PublicKey, error) {
return bc.contracts.NEO.ComputeNextBlockValidators(bc, bc.dao)
2019-11-18 12:24:48 +00:00
}
// GetNextBlockValidators returns next block validators.
func (bc *Blockchain) GetNextBlockValidators() ([]*keys.PublicKey, error) {
2020-08-28 07:24:54 +00:00
return bc.contracts.NEO.GetNextBlockValidatorsInternal(), nil
}
// GetEnrollments returns all registered validators.
func (bc *Blockchain) GetEnrollments() ([]state.Validator, error) {
2020-08-03 08:43:51 +00:00
return bc.contracts.NEO.GetCandidates(bc.dao)
2019-11-18 12:24:48 +00:00
}
// GetTestVM returns a VM and a Store setup for a test run of some sort of code.
func (bc *Blockchain) GetTestVM(t trigger.Type, tx *transaction.Transaction, b *block.Block) *vm.VM {
d := bc.dao.GetWrapped().(*dao.Simple)
systemInterop := bc.newInteropContext(t, d, b, tx)
vm := systemInterop.SpawnVM()
vm.SetPriceGetter(systemInterop.GetPrice)
2021-01-19 08:23:39 +00:00
vm.LoadToken = contract.LoadToken(systemInterop)
return vm
}
// Various witness verification errors.
var (
ErrWitnessHashMismatch = errors.New("witness hash mismatch")
ErrNativeContractWitness = errors.New("native contract witness must have empty verification script")
ErrVerificationFailed = errors.New("signature check failed")
ErrInvalidInvocation = errors.New("invalid invocation script")
ErrInvalidSignature = fmt.Errorf("%w: invalid signature", ErrVerificationFailed)
ErrInvalidVerification = errors.New("invalid verification script")
ErrUnknownVerificationContract = errors.New("unknown verification contract")
ErrInvalidVerificationContract = errors.New("verification contract is missing `verify` method")
)
// InitVerificationVM initializes VM for witness check.
func (bc *Blockchain) InitVerificationVM(v *vm.VM, getContract func(util.Uint160) (*state.Contract, error), hash util.Uint160, witness *transaction.Witness) error {
if len(witness.VerificationScript) != 0 {
if witness.ScriptHash() != hash {
return ErrWitnessHashMismatch
}
if bc.contracts.ByHash(hash) != nil {
return ErrNativeContractWitness
}
err := vm.IsScriptCorrect(witness.VerificationScript, nil)
if err != nil {
return fmt.Errorf("%w: %v", ErrInvalidVerification, err)
}
2021-02-15 12:03:32 +00:00
v.LoadScriptWithFlags(witness.VerificationScript, callflag.ReadOnly)
} else {
cs, err := getContract(hash)
if err != nil {
return ErrUnknownVerificationContract
}
md := cs.Manifest.ABI.GetMethod(manifest.MethodVerify, -1)
if md == nil || md.ReturnType != smartcontract.BoolType {
return ErrInvalidVerificationContract
}
initMD := cs.Manifest.ABI.GetMethod(manifest.MethodInit, 0)
2021-02-15 12:03:32 +00:00
v.LoadScriptWithHash(cs.NEF.Script, hash, callflag.ReadOnly)
2021-01-19 08:23:39 +00:00
v.Context().NEF = &cs.NEF
v.Jump(v.Context(), md.Offset)
if initMD != nil {
v.Call(v.Context(), initMD.Offset)
}
}
2021-01-22 09:54:17 +00:00
if len(witness.InvocationScript) != 0 {
err := vm.IsScriptCorrect(witness.InvocationScript, nil)
if err != nil {
return fmt.Errorf("%w: %v", ErrInvalidInvocation, err)
}
2021-01-22 09:54:17 +00:00
v.LoadScript(witness.InvocationScript)
}
return nil
}
// VerifyWitness checks that w is a correct witness for c signed by h.
func (bc *Blockchain) VerifyWitness(h util.Uint160, c hash.Hashable, w *transaction.Witness, gas int64) error {
ic := bc.newInteropContext(trigger.Verification, bc.dao, nil, nil)
ic.Container = c
_, err := bc.verifyHashAgainstScript(h, w, ic, gas)
return err
}
// verifyHashAgainstScript verifies given hash against the given witness and returns the amount of GAS consumed.
func (bc *Blockchain) verifyHashAgainstScript(hash util.Uint160, witness *transaction.Witness, interopCtx *interop.Context, gas int64) (int64, error) {
gasPolicy := bc.contracts.Policy.GetMaxVerificationGas(interopCtx.DAO)
if gas > gasPolicy {
gas = gasPolicy
}
vm := interopCtx.SpawnVM()
vm.SetPriceGetter(interopCtx.GetPrice)
2021-01-19 08:23:39 +00:00
vm.LoadToken = contract.LoadToken(interopCtx)
vm.GasLimit = gas
if err := bc.InitVerificationVM(vm, interopCtx.GetContract, hash, witness); err != nil {
return 0, err
}
err := vm.Run()
if vm.HasFailed() {
return 0, fmt.Errorf("%w: vm execution has failed: %v", ErrVerificationFailed, err)
}
resEl := vm.Estack().Pop()
if resEl != nil {
res, err := resEl.Item().TryBool()
if err != nil {
return 0, fmt.Errorf("%w: invalid return value", ErrVerificationFailed)
}
if vm.Estack().Len() != 0 {
return 0, fmt.Errorf("%w: expected exactly one returned value", ErrVerificationFailed)
}
if !res {
return vm.GasConsumed(), ErrInvalidSignature
}
} else {
return 0, fmt.Errorf("%w: no result returned from the script", ErrVerificationFailed)
}
return vm.GasConsumed(), nil
}
2019-10-22 14:56:03 +00:00
// verifyTxWitnesses verifies the scripts (witnesses) that come with a given
// transaction. It can reorder them by ScriptHash, because that's required to
// match a slice of script hashes from the Blockchain. Block parameter
// is used for easy interop access and can be omitted for transactions that are
// not yet added into any block.
// Golang implementation of VerifyWitnesses method in C# (https://github.com/neo-project/neo/blob/master/neo/SmartContract/Helper.cs#L87).
2020-11-27 10:55:48 +00:00
func (bc *Blockchain) verifyTxWitnesses(t *transaction.Transaction, block *block.Block, isPartialTx bool) error {
interopCtx := bc.newInteropContext(trigger.Verification, bc.dao, block, t)
gasLimit := t.NetworkFee - int64(t.Size())*bc.FeePerByte()
if bc.P2PSigExtensionsEnabled() {
attrs := t.GetAttributes(transaction.NotaryAssistedT)
if len(attrs) != 0 {
na := attrs[0].Value.(*transaction.NotaryAssisted)
gasLimit -= (int64(na.NKeys) + 1) * transaction.NotaryServiceFeePerKey
}
}
for i := range t.Signers {
gasConsumed, err := bc.verifyHashAgainstScript(t.Signers[i].Account, &t.Scripts[i], interopCtx, gasLimit)
2020-11-27 10:55:48 +00:00
if err != nil &&
!(i == 0 && isPartialTx && errors.Is(err, ErrInvalidSignature)) { // it's OK for partially-filled transaction with dummy first witness.
return fmt.Errorf("witness #%d: %w", i, err)
}
gasLimit -= gasConsumed
}
return nil
}
// verifyHeaderWitnesses is a block-specific implementation of VerifyWitnesses logic.
func (bc *Blockchain) verifyHeaderWitnesses(currHeader, prevHeader *block.Header) error {
var hash util.Uint160
if prevHeader == nil && currHeader.PrevHash.Equals(util.Uint256{}) {
hash = currHeader.Script.ScriptHash()
} else {
hash = prevHeader.NextConsensus
}
return bc.VerifyWitness(hash, currHeader, &currHeader.Script, HeaderVerificationGasLimit)
}
// GoverningTokenHash returns the governing token (NEO) native contract hash.
func (bc *Blockchain) GoverningTokenHash() util.Uint160 {
return bc.contracts.NEO.Hash
}
// UtilityTokenHash returns the utility token (GAS) native contract hash.
func (bc *Blockchain) UtilityTokenHash() util.Uint160 {
return bc.contracts.GAS.Hash
}
// ManagementContractHash returns management contract's hash.
func (bc *Blockchain) ManagementContractHash() util.Uint160 {
return bc.contracts.Management.Hash
}
func hashAndIndexToBytes(h util.Uint256, index uint32) []byte {
buf := io.NewBufBinWriter()
2019-11-27 09:23:18 +00:00
buf.WriteBytes(h.BytesLE())
buf.WriteU32LE(index)
return buf.Bytes()
}
func (bc *Blockchain) newInteropContext(trigger trigger.Type, d dao.DAO, block *block.Block, tx *transaction.Transaction) *interop.Context {
ic := interop.NewContext(trigger, bc, d, bc.contracts.Management.GetContract, bc.contracts.Contracts, block, tx, bc.log)
ic.Functions = systemInterops
switch {
case tx != nil:
ic.Container = tx
case block != nil:
ic.Container = block
}
ic.InitNonceData()
return ic
2019-12-30 11:01:49 +00:00
}
// P2PSigExtensionsEnabled defines whether P2P signature extensions are enabled.
func (bc *Blockchain) P2PSigExtensionsEnabled() bool {
return bc.config.P2PSigExtensions
}
2020-11-27 10:55:48 +00:00
// RegisterPostBlock appends provided function to the list of functions which should be run after new block
// is stored.
func (bc *Blockchain) RegisterPostBlock(f func(blockchainer.Blockchainer, *mempool.Pool, *block.Block)) {
bc.postBlock = append(bc.postBlock, f)
}
// -- start Policer.
// GetPolicer provides access to policy values via Policer interface.
func (bc *Blockchain) GetPolicer() blockchainer.Policer {
return bc
}
// GetBaseExecFee return execution price for `NOP`.
func (bc *Blockchain) GetBaseExecFee() int64 {
return bc.contracts.Policy.GetExecFeeFactorInternal(bc.dao)
}
2020-11-27 10:55:48 +00:00
// GetMaxVerificationGAS returns maximum verification GAS Policy limit.
func (bc *Blockchain) GetMaxVerificationGAS() int64 {
return bc.contracts.Policy.GetMaxVerificationGas(bc.dao)
}
// GetStoragePrice returns current storage price.
func (bc *Blockchain) GetStoragePrice() int64 {
if bc.BlockHeight() == 0 {
return native.DefaultStoragePrice
}
return bc.contracts.Policy.GetStoragePriceInternal(bc.dao)
}
2020-11-27 10:55:48 +00:00
// -- end Policer.