The user should specify it via parameter's `extendedtype` field and
via upper-level `namedtypes` field of the contract configuration YAML.
Also, as we have proper event structure source, make the `--guess-eventtype`
compilation option and make event types guess optional.
Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
It's enough to specify the input file only to get the standard output:
```
$ neo-go contract compile -i ./1-print/1-print.go
$ neo-go contract compile -i ./1-print/
```
Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
All Notary contract witnesses in incomplete transaction (both main
and fallback) may either have invocation scripts pushing dummy signature
on stack or be empty, both ways are OK. Notary actor keeps main tx's
Notary witness empty and keeps fallback tx's Notary witness filled
with dummy signature.
Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
It won't work with 1 for a single node and 3 for 4 CN scenario doesn't allow
the network to start with just three nodes (although technically 3 out of 4 is
sufficient to operate). See #2874.
d5a9af5860 is incompatible with the NeoFS
mainnet sidechain, so we add the old logic to the pre-Aspidochelone
behaviour. Changing flags at newMethodAndPrice() is a bit less convenient
unfortunately because this will affect interop validity checks, so let's have
this kludge here.
It directly affects node security and the default here MUST BE the safe choice
which is to do the verification. Otherwise it's just dangerous, absent any
VerifyBlocks configuration we'll get an insecure node. This option is not
supposed to be frequently used and it doesn't affect the ability to process
blocks, so breaking compatibility (in a safe manner) should be OK here.
And include some node-specific configurations there with backwards
compatibility. Note that in the future we'll remove Ledger's
fields from the ProtocolConfiguration and it'll be possible to access them in
Blockchain directly (not via .Ledger).
The other option tried was using two configuration types separately, but that
incurs more changes to the codebase, single structure that behaves almost like
the old one is better for backwards compatibility.
Fixes#2676.
It's more generic and convenient than MillisecondsPerBlock. This setting is
made in backwards-compatible fashion, but it'll override SecondsPerBlock if
both are used. Configurations are specifically not changed here, it's
important to check compatibility.
Fixes#2675.
Make NEP-11 code use getnep11balances the same way NEP-17 code uses
getnep17balances. This command was introduced well before getnep11balances
appeared, so it required always specifying contract explicitly. Now this
constraint can be relaxed somewhat in most cases.
1. In the single token mode compare known hashes instead of names, names can
be misleading.
2. Hardcode NEO/GAS, they are special (if not overrided by the wallet data).
calculatenetworkfee MUST calculate complete proper network fee, if we have
some extensions enabled and some attributes should be paid for that they're a
part of the equation too.
See neo-project/neo#2390. Can't see it there? No wonder, that's why we have
this bug for a year and a half. Not critical, we don't care about versions,
but _very_ annoying.
Specifying a certain stateroot R as `invoke*historic` RPC-call
parameter, we're willing to perform historic call based on the storage
state of root R. Thus, next block should be of the height h(R)+1. This
allows to use historic functionality for the current blockchain height.
HF_ prefix makes zero sense to me. If it's "hardfork", then it's in the
"Hardforks" section already. If it's "hotfix", then it made some sense back
when it was HF_2712_FixSyscallFees, but now it's codenamed anyway. So we can
drop it and have a cleaner config.
The key idea here is that even though we can't ensure MPT code won't make the
node active again we can order the changes made to the persistent store in
such a way that it practically doesn't matter. What happens is:
* after persist if it's time to collect our garbage we do it synchronously
right in the same thread working the underlying persistent store directly
* all the other node code doesn't see much of it, it works with bc.dao or
layers above it
* if MPT doesn't find some stale deactivated node in the storage it's OK,
it'll recreate it in bc.dao
* if MPT finds it and activates it, it's OK too, bc.dao will store it
* while GC is being performed nothing else changes the persistent store
* all subsequent bc.dao persists only happen after the GC is completed which
means that any changes to the (potentially) deleted nodes have a priority,
it's OK for GC to delete something that'll be recreated with the next
persist cycle
Otherwise it's a simple scheme with node status/last active height stored in
the value. Preliminary tests show that it works ~18% worse than the simple
KeepOnlyLatest scheme, but this seems to be the best result so far.
Fixes#2095.