Since the AllowedGroups []*keys.PublicKey slice is used in the
initialization, the test should use the same structures.
Signed-off-by: Ekaterina Pavlova <ekt@morphbits.io>
This section contains genesis-related settings including genesis-related or natives-related
extensions. Currently it includes the set of node roles that may be designated
duing the native Designation contract initialisation.
Close#3156.
Signed-off-by: Anna Shaleva <shaleva.ann@nspcc.ru>
Attempts to reuse elliptic.Unmarshal() and elliptic.UnmarshalCompressed() lead
to this:
name old time/op new time/op delta
PublicDecodeBytes-8 59.5µs ± 2% 61.8µs ± 1% +3.78% (p=0.000 n=10+9)
name old alloc/op new alloc/op delta
PublicDecodeBytes-8 3.99kB ± 0% 4.27kB ± 0% +6.81% (p=0.000 n=9+10)
name old allocs/op new allocs/op delta
PublicDecodeBytes-8 136 ± 0% 135 ± 0% -0.74% (p=0.000 n=10+10)
So it makes no sense. Refs. #1319.
Go 1.15 provides native (*ecdsa.PublicKey).Equal method, but we can't drop our
own Equal because the types are different and there is still code using our
Equal (forcing it to convert types is counterproductive), while changing
(*PublicKey).Equal to use (*ecdsa.PublicKey).Equal internally with some kind of
(*ecdsa.PublicKey)(p).Equal((*ecdsa.PublicKey)(key))
slows it down:
name old time/op new time/op delta
PublicEqual-8 14.9ns ± 1% 18.4ns ± 2% +23.55% (p=0.000 n=9+10)
name old alloc/op new alloc/op delta
PublicEqual-8 0.00B 0.00B ~ (all equal)
name old allocs/op new allocs/op delta
PublicEqual-8 0.00 0.00 ~ (all equal)
So leave it as is, but add this micro-bench. Refs. #1319.
The cost of Y calculation from X is comparable with signature check, so it
reduces witness check overhead by ~30% for cached keys and gives ~5% overall
boost in TPS.
Frequently one needs to check if struct serializes/deserializes
properly. This commit implements helpers for such cases including:
1. JSON
2. io.Serializable interface
The logic here is that we'll have all binary encoding/decoding done via our io
package, which simplifies error handling. This functionality doesn't belong to
util, so it's moved.
This also expands BufBinWriter with Reset() method to fit the needs of core
package.
PublicKey() for PrivateKey now just can't fail and it makes no sense to return
an error from it. There is a lot of associated functionality for which this
also is true, so adjust it accordingly and simplify a lot of code.
As NEO uses P256 we can use standard crypto/elliptic library for almost
everything, the only exception being decompression of the Y coordinate. For
some reason the standard library only supports uncompressed format in its
Marshal()/Unmarshal() functions. elliptic.P256() is known to have
constant-time implementation, so it fixes#245 (and the decompression using
big.Int operates on public key, so nobody really cares about that part being
constant-time).
New decompress function is inspired by
https://stackoverflow.com/questions/46283760, even though the previous one
really did the same thing just in a little less obvious way.
It makes no sense to provide an API for throw-away public keys, so obtain it
via a new real keypair generation where appropriate (and that's only needed
for testing).
And drop associated _pkg.dev remnants (refs. #307).
Original `dev` branch had two separate packages for public and private keys,
but those are so intertwined (`TestHelper` subpackage is a proof) that it's
better unite them and all associated code (like WIF and NEP-2) in one
package. This patch also:
* creates internal `keytestcases` package to share things with wallet (maybe
it'll be changed in some future)
* ports some tests from `dev`
* ports Verify() method for public key from `dev`
* expands TestPrivateKey() with public key check
2019-08-27 17:45:51 +03:00
Renamed from pkg/crypto/public_key_test.go (Browse further)