We can't lock them (or there will be a deadlock), but we need to fix this:
fatal error: concurrent map iteration and map write
goroutine 1 [running]:
runtime.throw(0xdec086, 0x26)
/usr/lib64/go/1.12/src/runtime/panic.go:617 +0x72 fp=0xc02fec2bf8 sp=0xc02fec2bc8 pc=0x42d932
runtime.mapiternext(0xc02fec2d40)
/usr/lib64/go/1.12/src/runtime/map.go:860 +0x597 fp=0xc02fec2c80 sp=0xc02fec2bf8 pc=0x40efe7
github.com/nspcc-dev/neo-go/pkg/network.(*Server).Shutdown(0xc0000fc160)
/home/rik/dev/neo-go2/pkg/network/server.go:194 +0x238 fp=0xc02fec2db0 sp=0xc02fec2c80 pc=0xa89da8
github.com/nspcc-dev/neo-go/cli/server.startServer(0xc0000fcc60, 0x0, 0x0)
/home/rik/dev/neo-go2/cli/server/server.go:399 +0x7a9 fp=0xc02fec3820 sp=0xc02fec2db0 pc=0xae2079
...
Fixes#1144. It's quite simple approach, we just update balance info right
upon contract migration. It will slow down migration transactions, but it
takes about 1-2 seconds to Seek through balances at mainnet's 3.8M, so the
approach should still work good enough. The other idea was to make lazy
updates (maintaining contract migration map), but it's more complicated to
implement (and implies that a balance get might also do a write).
There also is a concern about memory usage, it can give a spike of some tens
of megabytes, but that also is considered to be acceptable.
Part of #1055.
We should check contract scripthash against the one provided in manifest
and manifest groups. We shouldn't put on stack anything after return.
And ofcourse, we mast not destroy the old contract at the end, as
`contractDestroy` removes all storage items associated with the
old contract ID (which equals to the new contract ID). We just remove
old contract state - it's enough.
Part of #1055.
There'll be a lot of interops which result with a struct on stack instead
of interop interface, and sometimes their names are the same, so it's
unrelyable to take into account interop name only and don't pay
attention to it's API (package).
Also sort syscalls by package and name.
GetScriptContainer() interop can try to get this transaction and this attempt
will lead to hash calculation with transaction serialization, but transaction
can't be successfully serialized if it doesn't have a script set, so this
makes test invocations fail.
Now we have not only Random EC curve, but also Koblitz curve, so
it will be useful to have information about the curve for each
particular EC point. ecdsa.PublicKey has this information.
We were accepting transactions with zero system fee, but we shouldn't do
that. Also, transaction's verification execution has to be limited by network
fee.