Time is not really relevant for us here and we don't use this timestamp in any
way. Yet it occupies 24 bytes and we do two clock_gettime calls to get it.
Replace it with blockStamp which is going to be used in the future for
transaction retransmissions.
It allows to improve single-node TPS by another 3%.
Close#1468.
We should copy the key to avoid bytes substitution. Otherwise there's a
chance that at the end of dao.Store.Seek(...) execution some keys won't
be the same as the original keys found inside saveToMap function.
We had a kludge for getrawtransaction to set this useless field, but
7e371588a7 broke it. Add it right into the
decoder now to fix all types of queries (getblock/getrawtransaction/gettxout).
Fixes#1392.
After contract is migrated there is no way to retrieve it's state.
This commit implements some metadata for NEP5 contracts, so that
values important for diplaying transfer log aren't lost.
When synchronizing with stateroot-enabled network from genesis and if
stateroot is not enabled in block zero we were failing to update state height
because initially it's updated with a jump from 0 to StateRootEnableIndex, so
we should allow that to happen to have correct state height.
Fixes#1144. It's quite simple approach, we just update balance info right
upon contract migration. It will slow down migration transactions, but it
takes about 1-2 seconds to Seek through balances at mainnet's 3.8M, so the
approach should still work good enough. The other idea was to make lazy
updates (maintaining contract migration map), but it's more complicated to
implement (and implies that a balance get might also do a write).
There also is a concern about memory usage, it can give a spike of some tens
of megabytes, but that also is considered to be acceptable.
We need to compact our in-memory MPT from time to time, otherwise it quickly
fills up all available memory. This raises two obvious quesions --- when to do
that and to what level do that.
As for 'when', I think it's quite easy to use our regular persistence interval
as an anchor (and it also frees up some memory), but we can't do that in the
persistence routine itself because of synchronization issues (adding some
synchronization primitives would add some cost that I'd also like to avoid),
so do it indirectly by comparing persisted and current height in `storeBlock`.
Choosing proper level is another problem, but if we're to roughly estimate one
full branch node to use 1K of memory (usually it's way less than that) then we
can easily store 1K of these nodes and that gives us a depth of 10 for our
trie.
Items were serialized several times if there were several successful
transactions in a block, prevent that by using State field as a bitfield (as
it almost was intended to) and adding one more bit. It also eliminates useless
duplicate MPT traversions.
Confirmed to not break storage changes up to 3.3M on testnet.