The test did not wait for the mount command to fully shutdown all
running goroutines. This caused the go race detector to report a data
race related to lock refreshes.
==================
WARNING: DATA RACE
Write at 0x0000021bdfdb by goroutine 667:
github.com/restic/restic/internal/backend/retry.TestFastRetries()
/restic/restic/internal/backend/retry/testing.go:7 +0x18f
github.com/restic/restic/cmd/restic.withTestEnvironment()
/restic/restic/cmd/restic/integration_helpers_test.go:175 +0x183
github.com/restic/restic/cmd/restic.TestMountSameTimestamps()
/restic/restic/cmd/restic/integration_fuse_test.go:202 +0xac
testing.tRunner()
/usr/lib/go/src/testing/testing.go:1446 +0x216
testing.(*T).Run.func1()
/usr/lib/go/src/testing/testing.go:1493 +0x47
Previous read at 0x0000021bdfdb by goroutine 609:
github.com/restic/restic/internal/backend/retry.(*Backend).retry()
/restic/restic/internal/backend/retry/backend_retry.go:72 +0x9e
github.com/restic/restic/internal/backend/retry.(*Backend).Remove()
/restic/restic/internal/backend/retry/backend_retry.go:149 +0x17d
github.com/restic/restic/internal/cache.(*Backend).Remove()
/restic/restic/internal/cache/backend.go:38 +0x11d
github.com/restic/restic/internal/restic.(*Lock).Unlock()
/restic/restic/internal/restic/lock.go:190 +0x249
github.com/restic/restic/cmd/restic.refreshLocks.func1()
/restic/restic/cmd/restic/lock.go:86 +0xae
runtime.deferreturn()
/usr/lib/go/src/runtime/panic.go:476 +0x32
github.com/restic/restic/cmd/restic.lockRepository.func2()
/restic/restic/cmd/restic/lock.go:61 +0x71
[...]
Goroutine 609 (finished) created at:
github.com/restic/restic/cmd/restic.lockRepository()
/restic/restic/cmd/restic/lock.go:61 +0x488
github.com/restic/restic/cmd/restic.lockRepo()
/restic/restic/cmd/restic/lock.go:25 +0x219
github.com/restic/restic/cmd/restic.runMount()
/restic/restic/cmd/restic/cmd_mount.go:126 +0x1f8
github.com/restic/restic/cmd/restic.testRunMount()
/restic/restic/cmd/restic/integration_fuse_test.go:61 +0x1ce
github.com/restic/restic/cmd/restic.checkSnapshots.func1()
/restic/restic/cmd/restic/integration_fuse_test.go:90 +0x124
==================
In some rare cases files could be created which contain null IDs (all
zero) in their content list. This was caused by a race condition between
growing the `Content` slice and inserting the blob IDs into it. In some
cases the blob ID was written to the old slice, which a short time
afterwards was replaced with a larger copy, that did not yet contain the
blob ID.
We previously checked whether the set of snapshots might have changed
based only on their number, which fails when as many snapshots are
forgotten as are added. Check for the SHA-256 of their id's instead.
The status bar got stuck once the first error was reported, the scanner
completed or some file was backed up. Either case sets a flag that the
scanner has started.
This flag is used to hide the progress bar until the flag is set. Due to
an inverted condition, the opposite happened and the status stopped
refreshing once the flag was set.
In addition, the scannerStarted flag was not set when the scanner just
reported progress information.
As the FileSaver is asynchronously waiting for all blobs of a file to be
stored, the number of active files is higher than the number of files
from which restic is reading concurrently. Thus to not confuse users,
only display files in the status from which restic is currently reading.
After reading and chunking all data in a file, the FutureFile still has
to wait until the FutureBlobs are completed. This was done synchronously
which results in blocking the file saver and prevents the next file from
being read.
By replacing the FutureBlob with a callback, it becomes possible to
complete the FutureFile asynchronously.
We always need both values, except in a test, so we don't need to lock
twice and risk scheduling in between.
Also, removed the resetting in Done. This copied a mutex, which isn't
allowed. Static analyzers tend to trip over that.
The channel-based algorithm had grown quite complicated. This is easier
to reason about and likely to be more performant with very many
CompleteBlob calls.
As long as only a small fraction of the data in a repository is
rewritten, the keepBlobs set will be rather small after cleaning it up.
As golang maps do not shrink their memory usage, just copy the contents
over to a new map. However, only copy the map if the cleanup removed at
least half the entries.
The set covers necessary, existing and duplicate blobs. This removes the
duplicate sets used to track whether all necessary blobs also exist.
This reduces the memory usage of prune by about 20-30%.